a: \(A=\dfrac{4x\left(2-x\right)+8x^2}{\left(2+x\right)\left(2-x\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)
\(=\dfrac{8x-4x^2+8x^2}{\left(x+2\right)\cdot\left(-1\right)\cdot\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)
\(=\dfrac{8x+4x^2}{\left(x+2\right)\cdot\left(-1\right)}\cdot\dfrac{x}{-x+3}\)
\(=\dfrac{4x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\cdot x=\dfrac{4x^2}{x+3}\)
b: \(=\left(n^2+3n+1+1\right)\left(n^2+3n+1-1\right)\)
\(=\left(n^2+3n+2\right)\left(n^2+3n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4!=24\)