Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trí Phạm

a) Cho a, b, c là ba số đôi 1 khác nhau:

Tính \(S=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ac}{\left(a-b\right)\left(b-c\right)}\)

b) C/m: \(a^4+3\ge4a\)

Diệu Huyền
31 tháng 1 2020 lúc 11:35

\(a,\) Ta có: \(S=\frac{ab\left(a-b\right)-bc\left(c-b\right)+ac\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Xét tử thức ta có: \(ab\left(a-b\right)-bc\left(c-b\right)+ac\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left[\left(c-a\right)+\left(a-b\right)\right]+ac\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left(c-a\right)-bc\left(a-b\right)+ac\left(c-a\right)\)

\(=-b\left(a-b\right)\left(c-a\right)+c\left(a-b\right)\left(c-a\right)\)

\(=\left(a-b\right)\left(c-b\right)\left(c-a\right)\)

\(=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Vậy \(S=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)

Vậy .......

\(b,a^4+3\ge4a\)

\(\Leftrightarrow a^4-2a^2+1+2a^2-4a+2\ge0\)

\(\Leftrightarrow\left(a^2-1\right)^2+2\left(a-1\right)^2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+1\right)^2+2\right]\ge0\left(Luôn-đúng-\forall a\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Huế Anh
Xem chi tiết
Trần Quý
Xem chi tiết
Linh nè
Xem chi tiết
mr. killer
Xem chi tiết
Big City Boy
Xem chi tiết
Anh Vũ
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Thỏ bông
Xem chi tiết
Nguyễn Văn Quang
Xem chi tiết