`4.(3-x)^10=9(3-x)^8`
`=>(3-x)^{8}(4(3-x)^2-9)=0`
`=>` $\left[ \begin{array}{l}3-x=0\\(3-x)^2=\dfrac{9}{4}\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=3\\3-x=\dfrac{3}{2}\\3-x=-\dfrac{3}{2}\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=3\\x=\dfrac{3}{2}\\x=\dfrac{9}{2}\end{array} \right.$
Vậy `x=3` hoặc `x=3/2` hoặc `x=9/2`
`b,(x-1)^{x+3}=(x-1)^{x+1}`
`=>(x-1)^{x+1}[(x-1)^2-1]=0`
`=>` $\left[ \begin{array}{l}x-=1\\x-=-1\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=2\\x=1\\x=0\end{array} \right.$
Vậy `x=0` hoặc `x=1` hoặc `x=2`
a) 4(3 - x)10 = 9(3 - x)8
=> (x - 3)8.[4(x - 3)2 - 9) = 0
<=> (x - 3)8.(2x - 6 - 3)(2x - 6 + 3) = 0
<=> (x - 3)8(2x - 9)(2x - 3) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x-9=0\\2x-3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{9}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S = {3;9/2; 3/2}
b) (x - 1)x + 3 = (x - 1)x + 1
<=> (x - 1)x + 1.[(x - 3)2 - 1) = 0
<=>(x - 1)x + 1.(x - 3 - 1)(x - 3 + 1) = 0
<=> (x - 1)x + 1.(x - 4)(x - 2) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-4=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=4\\x=2\end{matrix}\right.\)
b) Ta có: \(\left(x-1\right)^{x+3}=\left(x-1\right)^{x+1}\)
\(\Leftrightarrow\left(x-1\right)^{x+3}-\left(x-1\right)^{x+1}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+1}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+1}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy: S={0;1;2}