Ta có: \(\left\{{}\begin{matrix}\left|x+1\right|\ge x+1\\\left|x-3\right|=\left|3-x\right|\ge3-x\end{matrix}\right.\)
\(\Rightarrow\left|x+1\right|+\left|3-x\right|+5\ge\left(x+1\right)+\left(3-x\right)+5\)
\(\Rightarrow\left|x+1\right|+\left|x-3\right|+5\ge9\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le3\end{matrix}\right.\)
\(\Leftrightarrow-1\le x\le3\)
Vậy MinA = 9 \(\Leftrightarrow-1\le x\le3\)