a, (x2+1)(x-3)-(x-3)(x2+3x+9)
=(x-3)(x2+1+x2+3x+9)
(x-3)(2x2+3x+10)
a, (x2+1)(x-3)-(x-3)(x2+3x+9)
=(x-3)(x2+1+x2+3x+9)
(x-3)(2x2+3x+10)
a) (𝑥2+1)(𝑥−3)−(𝑥−3)(𝑥2+3𝑥+9)b) (𝑥+2)2+𝑥(𝑥+5)c) (5𝑥+4𝑦)(5𝑥−4𝑦)−24𝑥2+15𝑦2
f) 𝑥3+27+(𝑥+3)(𝑥−9)
e) 𝑥3−3𝑥2−4𝑥+12f) 𝑥3+27+(𝑥+3)(𝑥−9)
e) 𝑥3−3𝑥2−4𝑥+12f) 𝑥3+27+(𝑥+3)(𝑥−9)
c) 5𝑥2+3𝑥−5𝑥𝑦−3𝑦d) 𝑥2−5𝑥−6
a) 𝑥2(𝑥𝑦−5).
Phân tích đa thức thành nhân tử : a, 36a^2 - ( a^2 + 9 )^2
b, (a + 3b ) ^2 - ( a^2 + 9 ) ^2
c, 9(2a - x ) ^2 - 4(3a-x)^2
d, x^5 - x^3 + x^2 -1/5
e, x^4 + x^3 + x + 1
1 phân thức đa thức sau thành nhân tử
a, A=(a+b+c)^2+(a-b+c)^2-4b^2
b, B=a*(b^2-c^2)-b*(c^2-a^2)+c*(a^2-b^2)
bài 2 phân thức đa thức sau thành nhân tử
a, A=(ab-1)^2+(a+b)^2
b, B=x^3-4x^2+12x-27
c, C=x^3+2x^2+2x+1
d, D=x^4-2x^3+2x-1
e, E=x^4+2x^3+2x^2+2x+1
f, F=x^2*(x^2-6)-x^2+9
m, M=(x^2+4y^2-5)^2-16*(x^2*y^2+2xy+1)
k, K=a^5-b^5-(a+b)^5
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0