Bài 1: Giải bất phương trình:
a) \(A^3_{x+1}+C^{x-1}_{x+1}< 14.\left(x+1\right)\)
b) \(\frac{1}{2}A^2_{2x}-A^2_x< \frac{6}{x}C^3_{x+10}\)
Bài 2: Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}C^y_x-C^{y+1}_x=0\\4C^9_x-5C^{y-1}_x=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2A^y_x+5C^y_x=90\\5A^y_x-2C^y_x=80\end{matrix}\right.\)
Khai triển các nhi thức sau:
a, (x+1)\(^5\) b, (x-2y)\(^6\) c, (x\(^2\)+\(\dfrac{1}{x}\))\(^5\) d, ( x\(^3\)-\(\dfrac{2}{x}\))\(^6\) e, (2-3x\(^2\))\(^6\)
f, (x-\(\dfrac{2}{x^2}\))\(^5\)
Với x\(\ne-1\) \(\left(\dfrac{x^2+2x+2}{x+1}\right)^{2018}=a_0+a_1x+a_2x^2+...+a_kx^{2018}+\dfrac{b_1}{x+1}+\dfrac{b_2}{\left(x+1\right)^2}+...+\dfrac{b_{2018}}{\left(x+1\right)^{2018}}.\). Tính: S=\(\sum\limits^{2018}_{k=1}bx\)
cho khai triển \(\left(\dfrac{x^2+2x+2}{x+1}\right)^{2020}=a_0+a_1x+a_2x^2+...+a_{2020}x^{2020}+\dfrac{b_1}{x+1}+\dfrac{b_2}{\left(x+1\right)^2}+...+\dfrac{b_{2020}}{\left(x+1\right)^{2020}}\) tính tổng \(S=b_1+b_2+...+b_{2020}\)
tìm số hạng chứa x^8 trong khai triển: \(\left(1+x^2\left(1-x\right)\right)^8\)
tìm hệ số của số hạng chứa x^5 trong khai triển (1+x+x2+x3)10
tìm hệ số của x^3 trong kt: (x2-x+2)10
tìm hệ số của x^4 trong kt: (1+x+3x2)10
Xét khai triển (1+x)(1+2x)(1+3x)....(1+2019x) = a0 + a1x + a2x2 + a3x3 +...+ a2019x2019. Tính S = 2a2 + (11 + 22 +...+ 20192)
1: hệ số của số hang chứa x8 trong khai triển \(\left(\frac{1}{x^4}+\sqrt[2]{x^5}\right)^{12}\)
2: hệ số của số hang chứa x16 trong khai triển \(\left[1-x^2\left(1-x^2\right)\right]^{16}\)
3: hệ số của số hạng chứa x5 trong khai triển \(x\left(1-2x\right)^5+x^2\left(1+3x\right)^{10}\)
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\) ( với x khác 0) biết:
\(2A^2_n=C^2_{n-1}+C^3_{n-1}\)