`4^(x+2) .3^x = 16.12^5`
`4^(x+2) .3^x = 4^2 . (3.4)^5`
`4^(x+2) .3^x = 4^2 . 3^5. 4^5`
`4^(x+2) .3^x = 4^7 . 3^5`
`4^(x+2) .3^x = 4^(5+2) . 3^5`
`x=5`
Ta có:4x+2.3x=16.125
⇔ 4x+2.3x=417.315
⇔ 4x+2:417.3x:315=1
⇔ 4x-15.3x-15=1
⇔ 12x-15=120
⇔ x-15=0
⇔ x=15
Ta có: \(4^{x+2}\cdot3^x=16\cdot12^5\)
\(\Leftrightarrow4^x\cdot16\cdot3^x=16\cdot12^5\)
\(\Leftrightarrow12^x=12^5\)
hay x=5