\(a.A=-2x^2+5x-8=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{5}{4}\right)^2-\dfrac{39}{8}\text{≤}-\dfrac{39}{8}\) ⇒ \(A_{Max}=-\dfrac{39}{8}."="\) ⇔ \(x=\dfrac{5}{4}\)
\(b.B=3-x^2+4x=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\) ≤ 7
⇒ \(B_{Max}=7."="\) ⇔ \(x=2\)
\(c.C=-2x^2+3x+1=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{17}{8}=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\text{≤}\dfrac{17}{8}\)
⇒ \(C_{Max}=\dfrac{17}{8}."="\)⇔ \(x=\dfrac{3}{4}\)
\(d.D=-5x^2-4x-\dfrac{19}{5}=-5\left(x^2+2.\dfrac{2}{5}x+\dfrac{4}{25}\right)-3=-5\left(x+\dfrac{2}{5}\right)^2-3\text{≤}-3\)⇒ \(D_{Max}=-3."="\) ⇔ \(x=-\dfrac{2}{5}\)