\(\left|2x-3\right|+\left|x-1\right|=1\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\3-2x+1-x=1\Rightarrow3x=3\Rightarrow x=1\left(l\right)\end{matrix}\right.\\\left\{{}\begin{matrix}1\le x< \dfrac{3}{2}\\3-2x+x-1=1\Rightarrow x=1\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\2x-3+x-1=1\Leftrightarrow3x=5;x=\dfrac{5}{3}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
Lập bảng xét dấu :
*TH1 : x < 1 => \(-2x+3-x+1=1\)
\(\Leftrightarrow-3x+4=1\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\) (loại)
* TH2 : \(1\le x< \dfrac{3}{2}\)\(\Rightarrow-2x+3+x-1=1\)
\(\Leftrightarrow-x+2=1\)
\(\Leftrightarrow x=1\) (TM)
* TH3 : \(x\ge\dfrac{3}{2}\) \(\Rightarrow2x-3+x-1=1\)
\(\Leftrightarrow3x-4=1\)
\(\Leftrightarrow3x=5\)
\(\Leftrightarrow x=\dfrac{5}{3}\left(TM\right)\)