a) Cho hàm số \(f_{\left(x\right)}=\left(x^3+12x-31\right)^{2010}\). Tính f(a) tại \(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
b) Tìm nghiệm nguyên của phương trình
BÀi 1: Cho P = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
a) Rút gọn P
b) Tính P khi x = \(\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}\)
c) Tìm GTNN của P
Bài 2: Cho N= \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) RÚt gọn N
b) Tính N khi x = 16
c) tìm GTNN của N
Giải phương tình:
a) \(x^2-7x+\sqrt{x^2-7x+8}=12
\)
b)\(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)
c)\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)
1 Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)(0<x≠1)
a) Rút gọn
b) Tính GTLN của Q=\(P-9\sqrt{x}+2019\)
2
a) Giải pt: \(x-1+4\sqrt{4-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}\)
b) Cho a,b số thực a≠0
CM: \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{a}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
c) Cho a, b, c là 3 số dương
CM: \(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^1+8ac\right)}+\frac{1}{c\left(c^2+8ab\right)}\le\frac{3}{3abc}\)
Dấu "=" xảy ra khi nào?
4
a) Tìm các số tự nhiên n sao cho n-50 và n+50 đều là số chính phương
b) Tìm số nguyên P,q sao cho
\(P^2=8q+1\)
5 Giải pt \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)
6 Cho 3 số thực x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge z\)
Tìm GTNN của P=xyz
1/Rút gọn và tính giá trị của biểu thức:
A=\(\sqrt{a-3-4\sqrt{a-1}}+\sqrt{a+8+6\sqrt{a-1}}\) tại a=3
B=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) tại x=7
C=\(\sqrt{2}-\sqrt{x+2\sqrt{2x-4}}\) tại x=6
D=\(\sqrt{x+\sqrt{x^2-4}}-\sqrt{x-\sqrt{x^2-4}}\) tại x=11
E=\(\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}}\) tại x=9
F\(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}\) tại a=3
G=\(\sqrt{15a^2}-8\sqrt{15}a+16\) tại a=\(\sqrt{\frac{5}{3}}+\sqrt{\frac{3}{5}}\)
H=\(\sqrt{10a^2-4a\sqrt{10}+4}\) tại a=\(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
2/Cho Q=\(\frac{6-a-\sqrt{a}}{\sqrt{a}-3}\)với a≥0
a) Rút gọn
b) Tìm giá trị của a để Q có GTLN
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
a) Cho bt : A = \(\left(\frac{6x+4}{3\sqrt{3x^3-8}}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)Rút gọn và tìm x nguyên sao cho A nguyên b) Cho x = \(\sqrt[3]{5\sqrt{6}+5}-\sqrt[3]{5\sqrt{6}-5}\)
Tính gtbt : B = \(x^3+15x\)
Bài 1. Cho biểu thức Q = ( \(\dfrac{\sqrt{x-2}}{3+\sqrt{x-2}}\) + \(\dfrac{x+7}{11-x}\) ) : (\(\dfrac{3\sqrt{x-2}+2}{x-\sqrt{x-2}-2}\) - \(\dfrac{1}{\sqrt{x-2}}\))
a) Rút gọn Q
b) Tìm giá trị của Q khi x = 3(\(\sqrt[4]{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}\) - \(\sqrt[4]{\dfrac{3-2\sqrt{2}}{3+2\sqrt{2}}}\) )
Bài 2: Cho các số thực dương a,b thỏa mãn a2014 + b2014 = a2013 + b2013 = a2012 + b2012
Chứng minh rằng A = (a+b) : \(\sqrt{\dfrac{a^3}{b^2}+\dfrac{8b^2}{a^3}}\) là một số hữu tỉ
Bài 3: Giải PT:
a) x2 - 20x + 24 + 8\(\sqrt{3\left(x-1\right)}\) = 0
b) (4x+2) \(\sqrt{x+8}\) = 3x2 + 7x + 8
c) x2 + 2x = 4 - 4\(\sqrt{x+3}\)