I. Giải pt: \(x^2-4x-2\sqrt{2x-1}+1=0\)
II.
Giải hệ phương trình 1. (x - y)^2 - (x - y) = 6 và 2(x^2 + y^2) = 5xy
Giải hệ phương trình 2:
13) xy - 2x - y + 2 = 0; 3x + y = 8
14) (x + y)^2 - 4(x + y) = 12; (x - y)^2 - 2(x - y) = 3
15) 3/x - 1/y = 7; 2/x - 1/y = 8
16) 1/x + 1/y = 16; 1/y + 1/z = 20; 1/z + 1/x = 18
17) \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\)
18) xy/x + y = 8/3; yz/y + z = 12/5; zx/x + z = 24/7
19) \(\left\{{}\begin{matrix}\dfrac{4}{z-1}+2x=7\\5x-3y=3\\\dfrac{2}{z-1}+y=4,5\end{matrix}\right.\)
20) x^2 + xy + xz = 2; y^2 + yz + xy = 3; z^2 + xz + yz = 47
20) 3xy - x - y = 3; 3yz - y - z = 13; 3zx - z- x = 5
III.
Bài 1, Cho phương trình: x^2 -(m-1)*x-m^2+m-2=0
1, Tìm m để pt có nghiệm x=1
2, Giải pt khi m=2
Bài 2: Giải hệ 3*x+ 4*y =7 và 4*x- y=3
IV. Hai tổ học sinh cũng là một công việc thì sau 1 giờ 30 phút sẽ xong, nếu tổ 1 làm 20 phút và tổ 2 làm 15 phút được 1/5 công việc. Hỏi mỗi tổ làm riêng xong việc trong bao lâu?
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\2x^2+y=1\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+x-1=y\\y^2+y-1=z\\z^2+z-1=x\end{matrix}\right.\)
Giải hệ: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}-\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{z}}=\frac{8}{3}\\x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{118}{9}\\x\sqrt{x}+y\sqrt{y}+z\sqrt{z}-\frac{1}{x\sqrt{x}}-\frac{1}{y\sqrt{y}}-\frac{1}{z\sqrt{z}}=\frac{728}{27}\end{matrix}\right.\)
Giải hệ phương trình:\(\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\\y+\dfrac{1}{z}=3\\z+\dfrac{1}{x}=3\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b^2\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\end{matrix}\right.\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b^2\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\end{matrix}\right.\)
Cho 3 sô thực dương x,y,z thoả mãn:1/x^2 +1/y^2 +1/z^2 =3
Tìm minA=y^2z^2/xy^2+z^2 +z^2x^2/yz^2+x^2 +x^2y^2/zx^2+y^2
Nhờ mn giải dùm ạ