Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
giải phương trình vô tỉ sau
1 ) \(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\dfrac{1}{2.\sqrt{2}}.\left(7x^2-x+4\right)\)
2) \(\left(x+3\right)\sqrt{\left(4-x\right)\left(x+12\right)}=28-x\)
3) \(x^4+2x^3+2x^2-2x+1=\left(x^3+x\right)\sqrt{\dfrac{1-x^2}{x}}\)
tính \(\sqrt{18-\sqrt{128}}\)
tìm đk B=\(\dfrac{2x+3}{x^2+5x-6}\)
giải pt
\(\sqrt{5x+2}=\sqrt{3-x}\)
\(\sqrt{4x-1}=\sqrt{2x-7}\)
\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
CM
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{2}\)
xét biểu thức
P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
a. rút gọn P
b. CMR nếu 0<x<1 thì P>0
Giair phương trình:
1) \(\sqrt[5]{32-x^2}-\sqrt[5]{1-x^2}=4\)
2) \(\sqrt{x}+\sqrt[4]{20-x}=4\)
3) \(x^3+1=2\sqrt{3x-1}\)
4) \(\sqrt[3]{x-1}+3=\sqrt[4]{82-x}\)
5)
\(a.\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(b.\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
Giải pt:
a)\(\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)
b)\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-2\)
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
giải phương trình vô tỉ sau
1) \(\sqrt[3]{6x+1}=2x\) (mình lập phương rồi nhưng không tách được giúp mình với nhé
2) \(\left(x+4\right)\left(x+1\right)-\sqrt{3x^2+5x+2}=6\)
3) \(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10+2x-x^2}=4\)
Câu 1:
Cho biểu thức: \(f_{\left(x\right)}=\) \(\dfrac{2\left(1-\sqrt{x}\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+4}{\sqrt{x}-4}+\dfrac{x\left(\sqrt{x}-3\right)-2\left(5\sqrt{x}+8\right)}{x-3\sqrt{x}-4}\)
a) Rút gọn biểu thức \(f_{\left(x\right)}\)
b) Tìm x để \(f_{\left(x\right)}\) đạt GTNN
Câu 2:
Giải PT: \(2\left(x-1\right)^2=3\left(\sqrt{x^3+2x^2-2x+3}+2\right)\)
Câu 3:
Tìm nghiệm nguyên của PT: \(9x+5y+18=2xy\)
Câu 4:
a) Giải PT: \(2x^2+2x+1=\sqrt{4x+1}\)
b) Giải hệ phương trình: \(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)
Câu 5:
a) Cho S = \(1+3+3^2+3^3+3^4+...+3^{98}+3^{99}\)
Chứng minh: S \(⋮\) 40
b) Rút gọn phân thức: \(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}\)
Giải phương trình
a) \(10\sqrt{x^3+1}=3\left(x^2+2\right)\) f) \(\sqrt{x^3+1}=2x^2+x+5\)
b) \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
c) \(3\sqrt{x^3+1}=2x^2-x+3\)
d) \(\sqrt{x^3+1}=-3x^2+5x-1\)
e) \(5\sqrt{x^3+1}=4x^2-3x+5\)
Mọi người giải giúp em với sáng mai em nộp rồi