Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Duy Thiệu

1.Cmr:\(2a^4+1\ge2a^3+a^2\) với mọi a

2.Cho \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{9.11}\)

\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{8.10}\right)\left(1+\dfrac{1}{9.11}\right)\)

Tìm số nguyên x thỏa mãn \(2A< \dfrac{2x}{11}< B\)

Các bạn làm giúp mình với nha chứ sắp thi rồi :)

Phạm Nguyễn Tất Đạt
16 tháng 5 2018 lúc 8:36

1)\(2a^4+1\ge2a^3+a^2\)

\(\Leftrightarrow2a^4-2a^3-a^2+1\ge0\)

\(\Leftrightarrow\left(a^4-2a^3+a^2\right)+\left(a^4-2a^2+1\right)\ge0\)

\(\Leftrightarrow\left(a^2-a\right)^2+\left(a^2-1\right)^2\ge0\)(luôn đúng)

"="<=>a=1

Phạm Nguyễn Tất Đạt
16 tháng 5 2018 lúc 8:49

Ta có:\(2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{9\cdot11}\)

\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\)

\(2A=1-\dfrac{1}{11}=\dfrac{10}{11}\)

\(B=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{9\cdot11}\right)\)

\(B=\dfrac{4}{1\cdot3}\cdot\dfrac{9}{2\cdot4}\cdot...\cdot\dfrac{100}{9\cdot11}\)

\(B=\dfrac{2\cdot2\cdot3\cdot3\cdot...\cdot10\cdot10}{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}\)

\(B=\dfrac{20}{11}\)

\(\Rightarrow11< 2x< 20\)

\(\Rightarrow x\in\left\{6;7;8;9\right\}\)


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Tuấn Kiên Phạm
Xem chi tiết
Gallavich
Xem chi tiết
Phan Đình Trường
Xem chi tiết
Hà Thảo Nhi
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
Tuấn Kiên Phạm
Xem chi tiết