Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Phương Thùy

1.CM: với mọi số nguyên n thì \(n^3+2013n^2+2n\) chia hết cho 6

2. tìm tất cả các số tự nhiên sao cho A= \(n^2+10n+136\) là số chính phương

Nguyễn Việt Lâm
30 tháng 12 2018 lúc 20:15

1/

\(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n\left(n^2+3n+2\right)+2010n^2\)

\(=n\left(n+1\right)\left(n+2\right)+2010n^2\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

Lại có \(2010⋮6\Rightarrow2010n^2⋮6\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) (đpcm)

2/ Giả sử A là số chính phương, đặt \(A=k^2\) với \(k\in N\)

\(\Rightarrow n^2+10n+136=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\)

\(\Leftrightarrow\left(n+5\right)^2-k^2=-111\Leftrightarrow\left(n+k+5\right)\left(n-k+5\right)=-111\)

Do \(n+k+5\ge5\) nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}n+k+5=37\\n-k+5=-3\end{matrix}\right.\) \(\Rightarrow n=12\)

TH2: \(\left\{{}\begin{matrix}n+k+5=111\\n-k+5=-1\end{matrix}\right.\) \(\Rightarrow n=50\)

Vậy \(n=\left\{12;50\right\}\)

Trần Trung Nguyên
30 tháng 12 2018 lúc 20:21

1.

Ta có \(n^3+2013n^2+2n=n^3+3n^2+2n+2010n^2=n^3+n^2+2n^2+2n+2010n^2=n^2\left(n+1\right)+2n\left(n+1\right)+2010n^2=\left(n+1\right)\left(n^2+2n\right)+2010n^2=n\left(n+1\right)\left(n+2\right)+2010n^2\)

Ta lại có \(n\left(n+1\right)\left(n+2\right)\) là 3 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(1\right)\)

\(2010⋮6\Leftrightarrow2010n^2⋮6\left(2\right)\)

Từ (1),(2)\(\Rightarrow n\left(n+1\right)\left(n+2\right)+2010n^2⋮6\) hay \(n^3+2013n^2+2n⋮6\)

2.

Đặt \(n^2+10n+136=k^2\left(k\in N\right)\Leftrightarrow n^2+2.n.5+25+111=k^2\Leftrightarrow\left(n+5\right)^2+111=k^2\Leftrightarrow111=k^2-\left(n+5\right)^2\Leftrightarrow\left(k+n+5\right)\left(k-n-5\right)=111\)(*)

Vì 111 là số nguyên tố và k+n+5>k-n-5

Vậy (*)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n+5=111\\k-n-5=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k+n=106\\k-n=6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}k=56\\n=50\end{matrix}\right.\)

Vậy n=50 thì n2+10n+136 là số chính phương


Các câu hỏi tương tự
Minh Hiếu
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Angela jolie
Xem chi tiết
potketdition
Xem chi tiết
Triều Nguyễn Quốc
Xem chi tiết
Cao Hồ Ngọc Hân
Xem chi tiết
Vấn Đề Nan Giải
Xem chi tiết
yeens
Xem chi tiết
Aiken
Xem chi tiết