1/Cho \(\Delta ABC\) cân tại A có \(\widehat{A}\)=50 độ.
a)Tính \(\widehat{B}\),\(\widehat{C}\).
b)Vẽ AH\(\perp\)BC tại H.Chứng minh \(\Delta ABH=\Delta ACH\).
c)Vẽ E là trung điểm của AC.Gọi Q là giao điểm của AH và BE.Chứng minh BQ=\(\frac{2}{3}\)BE.
d)Gọi M là trung điểm của BH.Qua M vẽ đường thẳng song song với AH cắt AB tại F.Chứng minh C,Q,F thẳng hàng.
2/Nhà bạn An (điểm A),nhà bạn Bình (điểm B) và trường học (điểm C) được minh họa như hình vẽ.Biết con đường rộng 50m,nhà bạn An cách nhà bạn Bình 60m,nhà bạn Bình cách trường 130m.Tính khoảng cách nhà bạn An đến trường (làm tròn đến hàng đơn vị).
a) ΔABC cân tại A (GT)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-50^0}{2}=75^0\)
b) Xét 2 tam giác vuông ΔABH và ΔACH ta có:
AB = AC (GT)
AH: cạnh chung
=> ΔABH = ΔACH (c.h - c.g.v)
c) ΔABH = ΔACH (cmt)
=> BH = CH (2 cạnh tương ứng)
=> H là trung điểm của BC
=> AH là đường trung tuyến của ΔABC
Lại có: BE cũng là đường trung tuyến của ΔABC
=> Q là trọng tâm của ΔABC
\(\Rightarrow BQ=\frac{2}{3}BE\)