Cho ba số a,b,c là 3 số thực dương thỏa mãn (ab)3 + (bc)3 + (ca)3 = 3 (abc). Tính giá trị biểu thức
\(\left(1+\frac{a}{b}\right)+\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)\)
1 ) Cho a , b , c là các số dương thỏa mãn : \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=8\)
Tính giá trị của biểu thức \(P=\frac{a^3+b^3+c^3}{abc}\)
2 . Cho a , b , c là 3 số dương thỏa mãn : \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) . Tìm giá trị lớn nhất của biểu thức :
\(Q=abc\)
cho a,b,c thỏa mãn \(a+b+c=7,a^2+b^2+c^2=23,abc=3\). Tính giá trị biểu thức :
\(A=\frac{1}{ab+c-6}+\frac{1}{bc+a-6}+\frac{1}{ca+b-6}\)
Cho các số thực dương a ; b; c . tìm giá trị nhỏ nhất của biểu thức
D=\(\frac{a^3+2}{ab+13}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
a)Cho 3 số a,b,c thỏa mãn abc=2019. Tính giá trị biểu thức:
M=\(\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ac+c+1}\)
b)Cho b,c ≠0 và a+b+c=abc và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Cminh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cho a,b,c là các số dương thỏa mãn:\(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=8\) Tính giá trị của biểu thức: P =\(\frac{a^3+b^3+c^3}{abc}\)
Bài 1: Cho 3 số a,b,c thỏa mãn điều kiện abc=2013.Tính giá trị biểu thức :
P=\(\frac{2013a^2bc}{ab+2013a+2013}+\frac{ab^2c}{bc+b+2013}+\frac{abc^2}{ac+c+1}\)
Bài 1:Cho 3 số a,b,c thỏa mãn điều kiện abc=2013.Tính giá trị biểu thức :
P=\(\frac{2013a^2bc}{ab+2013a+2013}+\frac{ab^2c}{bc+b+2013}+\frac{abc^2}{ac+c+1}\)
Cho 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) . Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{a+2017c}{a-c}+\frac{b+2017c}{b-c}\)