Cho a,b,c>0. CMR
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
Cho a, b, c dương.
Cmr: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
cho a,b,c > 0. Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
giả sử a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=12\) chứng minh rằng
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\)≤1
căn bậc hai của a+2b+3c + căn bậc hai của b+2c+3a+ căn bậc hai của c+2a+3b lớn hơn hoặc bằng căn bậc hai của 6 nhân ( căn a + căn b + căn c)
cho a,b,c,d >0 thỏa a+b+c+d=4 chứng minh \(\frac{a}{1+b^2c}+\frac{b}{1+c^2a}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
cho a,b,c>0 và abc=1. chứng minh rằng
\(\dfrac{1}{2a^2+1}+\dfrac{1}{2b^2+1}+\dfrac{1}{2c^2+1}\le1\)
với a,b,c ≥ 0 và a+b+c=3. chứng minh rằng:
(1) a/a+2bc+b/b+2ac+c/c+2ab ≥1 (2)a/2a+bc+b/2b+ac+c/2c+ab ≤ 1
a,b,c>0 . Tìm Min \(E=\left(1+\dfrac{a}{2b}\right)\left(1+\dfrac{b}{2c}\right)\left(1+\dfrac{1}{2a}\right)\)