Bạn lại ghi nhầm đề, xuất hiện 2 con \(x_2\) ở biểu thức câu b mà mình đoán 1 con phải là \(x_1\)
Bạn lại ghi nhầm đề, xuất hiện 2 con \(x_2\) ở biểu thức câu b mà mình đoán 1 con phải là \(x_1\)
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3
Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
1. Trong mặt phẳng tọa độ Oxy , cho ( d ) : y = x + n - 1 và ( P ) : y = x2
a. Tìm n để ( d ) đi qua B ( 0,2 )
b. Tìm n để ( d ) cắt ( P ) tại 2 điểm phân biệt có hoành độ là x1 , x2 thỏa mãn 4 \(\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0\)
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Xác định m để (d) và (P) cùng đi qua điểm có tung độ bằng 1
Trong mặt phẳng tọa độ Oxy, cho đg thẳng (d) : \(y=2mx-m^2+1\) và parabol (P): \(y=x^2\)
a) CM ( d) luôn cắt P tại hai điểm phân biệt
b) tìm tất cả giá trị m để d cắt P tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{-2}{x_1x_2}+1\)