Pt hoành độ giao điểm: \(x^2-2mx+m^2-1=0\)
\(\Delta'=m^2-\left(m^2-1\right)=1>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb hay d luôn cắt (P) tại 2 điểm pb
Để pt có 2 nghiệm khác 0 \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne\pm1\)
Khi đó: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{-2}{x_1x_2}+1\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{x_1x_2-2}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=x_1x_2-2\Leftrightarrow2m=m^2-3\)
\(\Leftrightarrow m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=3\end{matrix}\right.\)