Giải hộ mình câu c thôi nhoa!
Cho: \(\left(P\right):y=x^2\) và \(\left(d\right):y=2.\left(m-1\right)x+m^2+2m\)
a) Tìm tọa độ giao điểm của (d) và (P) với m=-1
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn: \(x_1^2+x_2^2+4x_1x_2=36\)
c) Tìm 2 điểm thuộc (P) sao cho 2 điểm đó đối xứng với nhau qua M(-1;5)
b: Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x-m^2-2m=0\)
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)
\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
\(x_1^2+x_2^2+4x_1x_2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)
\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)
\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)
\(\Leftrightarrow2m^2-12m-32=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)
hay \(m\in\left\{8;-2\right\}\)