Tìm a,b,c biết
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) và a+b+c=-50
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
1, Tính giá trị của các biểu thức sau
a) \(\dfrac{6^5.8^4.10^{16}}{4^{15}.9^5.25^8}\)
b) \(\dfrac{90}{6^3+3.6^2+3^2.6+3^3^{ }}\)
c) \(\dfrac{4^7.27^4.25^2+45^6.4^7}{36^7.625+4^7.3^{14}.5^6}\)
Giúp mik nhé mí bạn.
1) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CM :
b) \(\dfrac{5a-3b}{3a+2b}=\dfrac{5c-3d}{3c+2d}\)
c) \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
d) \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
e) \(\dfrac{a^2}{b^2}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)
f) \(\dfrac{\left(a+c\right)^2}{a^2-c^2}=\dfrac{\left(b+d\right)^2}{b^2-d^2}\)
Làm được câu nào thì trả lời nhé . Thanks trước
Tính giá trị biểu thức M=a+b+c
cho bít \(\dfrac{a+16}{9}=\dfrac{b-25}{16}=\dfrac{c+9}{25}\)
Và 2a3-1=15
Bài 1: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{a+c}{c}=\dfrac{b+d}{d}\)
b) \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c) \(\dfrac{a-c}{a}=\dfrac{b-d}{b}\)
d) \(\dfrac{3a+5b}{2a-7b}=\dfrac{3c+5d}{2c-7d}\)
e) \(\dfrac{\left(a+b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
f) \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\)
Bài 2: Tìm x, biết
a) \(\dfrac{3}{x-4}=\dfrac{x+4}{3}\)
b) \(\dfrac{x+2}{2}=\dfrac{1}{1-x}\)
c) \(\dfrac{x+7}{x+4}=\dfrac{x-1}{x-2}\)
Bài 3: Cho tỉ lệ thức \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
Tìm giá trị của tỉ số \(\dfrac{x}{y}\)
Tính giá trị biểu thức :
A=\(\left[\dfrac{1\dfrac{11}{31}.4\dfrac{3}{7}-\left(15-6\dfrac{1}{3}.\dfrac{2}{19}\right)}{4\dfrac{5}{6}+\dfrac{1}{6}\left(12-5\dfrac{1}{3}\right)}\right].\dfrac{31}{50}\)
tìm các giá trị nguyên của x để biểu thức có giastrij nhỏ nhất
\(A=\dfrac{1}{x-3}\) \(B=\dfrac{7-x}{x-5}\) \(C=\dfrac{5x-19}{x-4}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). chứng minh rằng ta có các tỉ lệ thức sau( giả thiết rằng các tỉ lệ thức phải chứng minh đều có nghĩa)
a) \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c) \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)