a. \(5^n=625\)
\(\Rightarrow5^n=5^4\)
\(\Rightarrow n=4\)
Vậy.....
b. \(12^n=144\)
\(\Rightarrow12^n=12^2\)
\(\Rightarrow n=2\)
Vậy........
a) 5n = 625
\(\Rightarrow\) 5n = 54
\(\Rightarrow\) n = 4
a,5n=625
5n=54
=>n=4
b,12n=144
12n=122
=>n=2
a) 5n=625
=> 5n=54
=> n=4
b) 12n=144
=> 12n=122
=> n=2
c) (n-2)2=(n-2)4
=> (n-2)2-(n-2)4=0
=> (n-2)2[1-(n-2)2]=0
=> \(\left[{}\begin{matrix}\left(n-2\right)^2=0\\1-\left(n-2\right)^2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n-2=0\Rightarrow n=2\\\left(n-2\right)^2=1\Rightarrow n-2=\pm1\Rightarrow\left[{}\begin{matrix}n-2=1\Rightarrow n=3\\n-2=-1\Rightarrow n=1\end{matrix}\right.\end{matrix}\right.\)
vay n\(\in\) { 1;2;3}
=>