2. a) \(7^2=49\equiv-1\left(mod5\right)\)
\(\Rightarrow\left(7^2\right)^{6n}\equiv\left(-1\right)^{6n}\left(mod5\right)\)
\(\Rightarrow7^{12n}\equiv1\left(mod5\right)\Rightarrow7^{12n}-1⋮5\)
b) + \(12^2=144\equiv-1\left(mod5\right)\)
\(\Rightarrow12^{4n}\equiv1\left(mod5\right)\Rightarrow12^{4n+1}\equiv2\left(mod5\right)\) (1)
+ \(3^2\equiv-1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)
\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\) (2)
+ Từ (1) và (2) \(\Rightarrow12^{4n+1}+3^{4n+1}⋮5\)
c) \(9\equiv-1\left(mod10\right)\Rightarrow9^{2019}\equiv\left(-1\right)^{2019}\left(mod10\right)\)
\(\Rightarrow9^{2019}+4\equiv-1+4=-3\left(mod10\right)\)
=> \(9^{2014}+4\) chia 10 dư 7
Lời giải:
\(432\equiv 32\pmod {100}\Rightarrow 432^{2019}\equiv 32^{2019}\equiv 2^{5.2019}\pmod{100}\)
Lại có:
\(2^{10}\equiv 24\equiv -1\pmod {25}\)
\(\Rightarrow 2^{5.2019}=(2^{10})^{1009}.2^5\equiv (-1)^{1009}.2^5\equiv 18\pmod {25}\)
Đặt \(2^{5.2019}=25k+18\).
Vì $2^{5.2019}$ chẵn nên $k$ chẵn (1)
Vì $2^{5.2019}$ chia hết cho $4$ nên $25k+18$ chia hết cho $4$. Mà $18$ không chia hết cho $4$ nên $k$ không chia hết cho $4$ (2)
Từ (1);(2) suy ra $k$ có dạng $4t+2$
Khi đó $2^{5.2019}=25(4t+2)+18=100t+68\equiv 68\pmod{100}$
\(\Rightarrow 432^{2019}\equiv 2^{5.2019}\equiv 68\pmod {100}\) hay số đã cho có tận cùng là $68$
Lời giải:
\(432\equiv 32\pmod {100}\Rightarrow 432^{2019}\equiv 32^{2019}\equiv 2^{5.2019}\pmod{100}\)
Lại có:
\(2^{10}\equiv 24\equiv -1\pmod {25}\)
\(\Rightarrow 2^{5.2019}=(2^{10})^{1009}.2^5\equiv (-1)^{1009}.2^5\equiv 18\pmod {25}\)
Đặt \(2^{5.2019}=25k+18\).
Vì $2^{5.2019}$ chẵn nên $k$ chẵn (1)
Vì $2^{5.2019}$ chia hết cho $4$ nên $25k+18$ chia hết cho $4$. Mà $18$ không chia hết cho $4$ nên $k$ không chia hết cho $4$ (2)
Từ (1);(2) suy ra $k$ có dạng $4t+2$
Khi đó $2^{5.2019}=25(4t+2)+18=100t+68\equiv 68\pmod{100}$
\(\Rightarrow 432^{2019}\equiv 2^{5.2019}\equiv 68\pmod {100}\) hay số đã cho có tận cùng là $68$