1) Phân tích các đa thức sau thành nhân tử:
a/ (a+b)2 - 4
b/ 4a2 + 8ab - 3a - 6b
c/ a2 + b2 - c2 - 2ab
d/ 5x2 - 5xy - 3x + 3y
2) Thực hiện các phép tính:
a/\(\dfrac{1-x}{x}+\dfrac{x}{1+x}\)
b/\(\dfrac{4}{x+2}+\dfrac{3}{2-x}+\dfrac{12}{x^2-4}\)
3) Rút gọn rồi tính giá trị của biểu thức sau với x = 1, y = 2:
\(\dfrac{x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)
1. a. \(\left(a+b\right)^2-4\)
\(=\left(a+b+2\right)\left(a+b-2\right)\)
b. \(4a^2+8ab-3a-6b\)
\(=4a\left(a+b\right)-3\left(a+b\right)\)
\(=\left(4a-3\right)\left(a+b\right)\)
c. \(a^2+b^2-c^2-2ab\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
d. \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(5x-3\right)\left(x-y\right)\)
2. a. \(\dfrac{1-x}{x}+\dfrac{x}{1+x}\)
\(=\dfrac{1-x^2}{x\left(1+x\right)}+\dfrac{x^2}{x\left(1+x\right)}\)
\(=\dfrac{1-x^2+x^2}{x\left(1+x\right)}=\dfrac{1}{x\left(1+x\right)}\)
b. \(\dfrac{4}{x+2}+\dfrac{3}{2-x}+\dfrac{12}{x^2-4}\)
\(=\dfrac{4x-8}{\left(x+2\right)\left(x-2\right)}-\dfrac{3x+6}{\left(x+2\right)\left(x-2\right)}+\dfrac{12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)
3. \(\dfrac{x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)
\(=\dfrac{3x^3-x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{3x^3+x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{2x^2}{x\left(y-3x\right)\left(y+3x\right)}\)
\(=\dfrac{3x^3-x^2y-3x^3-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{-xy+2x}{\left(3x+y\right)\left(3x-y\right)}\)
Thay x = 1 và y = 2 vào phân thức ta được:
\(=-\dfrac{2+2.2}{\left(3+2\right)\left(3-2\right)}=-\dfrac{6}{5}\)