Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Hằng

1) \(\overset{lim}{x\rightarrow1}\)\(\dfrac{x^3-3x+2}{x^4-4x+3}\)\(\)

2)\(\overset{lim}{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}\)

3) \(\overset{lim}{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}\)

4)\(\overset{lim}{x\rightarrow0^-}\dfrac{\left(1+x\right)\left(1+4x\right)-1}{x^2}\)

5) \(\overset{lim}{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}\)

Nguyễn Việt Lâm
24 tháng 1 2019 lúc 22:44

\(\lim\limits_{x\rightarrow1}\dfrac{x^3-3x+2}{x^4-4x+3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+2\right)\left(x-1\right)^2}{\left(x^2+2x+3\right)\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\dfrac{x+2}{x^2+2x+3}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x-2\right)^2}=\lim\limits_{x\rightarrow2^-}\dfrac{x^2+3x+2}{x-2}=-\infty\)

\(\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}\left(x-2\right)^{20}}{\left(x+4\right)^{10}\left(x-2\right)^{20}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}}{\left(x+4\right)^{10}}=\dfrac{3^{10}}{2^{10}}\)

\(\lim\limits_{x\rightarrow0^-}\dfrac{4x^2+5x}{x^2}=\lim\limits_{x\rightarrow0^-}\dfrac{4x+5}{x}=-\infty\)

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(\sqrt{x+5}+2\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+5}+2}{\sqrt{x+2}+1}=2\)


Các câu hỏi tương tự
dung doan
Xem chi tiết
dung doan
Xem chi tiết
James Pham
Xem chi tiết
dung doan
Xem chi tiết
dung doan
Xem chi tiết
camcon
Xem chi tiết
Ngọc Ánh Nguyễn Thị
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
dung doan
Xem chi tiết