\(35^{2019}-35^{2018}\)
\(=35^{2018}\times35-35^{2018}\)
\(=35^{2018}\left(35-1\right)\)
\(=35^{2018}\times34\)
vì \(34⋮17\)
\(\Rightarrow35^{2018}\times34⋮17\)
Vậy: \(35^{2019}-35^{2018}⋮17\)
Giải:
\(35^{2019}-35^{2018}\)
\(=35^{2018}\left(35-1\right)\)
\(=34.35^{2018}\)
\(=2.17.35^{2018}⋮17\)
Vậy ...