Giải hệ phương trình sau bằngcách đưa về hệ phương trình dạng tam giác :
\(\left\{{}\begin{matrix}x+3y+2z=1\\3x+5y-z=9\\5x-2y-3z=-3\end{matrix}\right.\)
chi phi san xuat ban x cuon tap chi duoc cho boi cong thuc được cho bởi 2 C= ( x ) 0, 0001x − 0, 2 x + 10000 C(x) được tính theo đơn vị là vạn đồng. Chi phí phát hành cho mỗi cuốn là 4 nghìn đồng. 10. a)Tính tổng ... a)Chứng minh rằng số tiền lãi khi in x cuốn tạp chí là 2 L( x) = −0, 0001x + 1, 8 x − 1000 b)Hỏi in bao nhiêu cuốn thì có lãi?
cho x+y+z+t=2\(\Pi\)
CMR \(\cos^2x+\cos^2y-\cos^2z-\cos^2t=-2\sin\left(x+y\right)\sin\left(y+z\right)\cos\left(x+z\right)\)
cho x,y,z là các số thực dương thỏa mãn: xy+yz+xz=2xyz. tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{1}{x\left(2x-1\right)^2}+\frac{1}{y\left(2y-1\right)^2}+\frac{1}{z\left(2z-1\right)^2}\)
Cho x;y là các số thực dương sao cho \(2x+y\) và \(2y+x\) khác 2. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\dfrac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(x+2y-2\right)^2}-3\left(x+y\right)\)
Ace Legona,Songoku hai bn giúp mk nha
Biểu thức \(P=\dfrac{\left(1-tan^2x\right)^2}{4tan^2x}-\dfrac{1}{4sin^2xcos^2x}\) có giá trị không phụ thuộc biến \(x\). Khi đó phương trình ẩn \(y\) sau đây có bn nghiệm dương: \(y^2-3y+P=0\)
\(\left\{{}\begin{matrix}3x+2y=5m-6\\2x-y=m+3\end{matrix}\right.\)
Tìm điều kiện của m để hệ phương trình(1) có nghiệm (x;y) mà\(x^2+y^2=1\)
Cho x, y, z là các số thực dương thỏa mãn: \(x+y-z=-1\). Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{x^3y^3}{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}\)
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)