Vì \(\Delta ABC\) đều
=> \(\widehat{ABC}=\widehat{BAC}=\widehat{ACB}=60^o\)
Có : \(\widehat{ACB}+\widehat{ACD}=180^o\) ( hai góc kề bù )
=> \(\widehat{ACD}=180^o-\widehat{ACB}=180^o-60^o=120^o\)
Có : AC = CD
=> \(\Delta ACD\) cân tại C
=> \(\widehat{CAD}=\widehat{CDA}=\frac{180^o-\widehat{ACD}}{2}=\frac{180^o-120^o}{2}=30^o\)
Chứng minh tương tự ta cũng có : \(\widehat{EAB}=30^o\)
Có ; \(\widehat{EAD}=\widehat{EAB}+\widehat{BAC}+\widehat{CAD}=30^o+60^o+30^o=120^o\)
Vậy \(\widehat{EAD}=120^o\)