a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
cho tam giác abc vuông tại a. lấy d trên cạnh bc sao cho góc bad= góc bca. Trên tia đối của tia AD lấy điểm E sao cho AE= BC. Trên tia đối của tia CA lấy điểm F sao cho CF=AB. CHỨNG MINH BE VUÔNG GÓC BF
cho tam giác ABC. trên tia đối của tia AB lấy điểm D sao cho AB=AD, trên tia đối của tia AC lấy điểm E sao cho AC=AE. một đường đi qua A cắt các cạnh BC và DE lần lượt tại M và N. chúng minh góc ADE=góc ABC; góc AED= góc ACB
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC,D là trung điểm của AC.
a) Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Chứng minh rằng AE song song với BC.
b) Trên tia đối của tia AB lấy điểm Fsao cho AF=AB. Chứng minh rằng góc FAC= 2 góc ABC
c) Chứng minh rằng AD song song với EF và AD = 1/2 EF
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. Chứng minh rằng
a) Tam giác BHD = tam giác CKE b) Tam giác AHB = tam giác AKC c) BC song song với HK
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF = BA. a) Chứng minh tam giác ABE = tam giác FBE. b) EF vuông góc với BC c)trên tia đối cua tia EF lấy M sao cho EM=EC. chứng minh B;A;M thẳng hàng
Cho tam giác ABC vuông tại A. Trên BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC ở D. Trên BC lấy điểm E sao cho BA=BE
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh DE vuông góc với BC
c) Trên tia đối của tia AB lấy điểm M sao cho AM=EC, chứng minh MD=CD
Bài 1: Cho tam giác ABC vuông tại A,vẽ BE là phân giác của ABC(E thuộc AC).Trên cạnh BC lấy điểm D sao cho BD=BA .Chứng minh rằng :
a, Tam giác ABE= Tam Giác DBE b, DE VUÔNG GÓC BC ;
c, Trên tia đối của tia AB lấy điểm F sao cho AF = DC. C/minh : F,E,D thẳng hàng.
Bài 2: Cho xOy nhọn , vẽ Ot là phân giác của xOy .Lấy I trên Ot, kẻ IAOx (AOx)
cắt Oy tại K, kẻ IBOy cắt Ox tại H.Chứng minh:
a, Tam Giác AOI= Tam Giác BOI ; b, AK=BH c,Lấy D là trung điểm HK C/m: O,I,D thẳng
Cho tam giác ABC, có AB<AC. Kẻ tia phân giác AD của góc BAC ( D thuộc BC). Trên cạnh AC lấy điểm F sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng:
a) Tam giác BDF= tam giác EDC
b) BF=EC
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.