cho tam giác ABC với AB = AC lấy M là trung điểm của BC trên tia BC lấy điểm N trên tia CB lấy diểm K sao cho CN =BK chứng minh AM là tia phân giác của góc BAC /AK =AN/AM vuông góc BC
Cho tam giác ABC có AB = AC. Tia Ax là tia phân giác của góc BAC, tia Ax cắt BC tại H.
Chứng minh rằng:
a.Tam giác AHB = Tam giác AHC
b. AH là đường trung trực của BC
c.Trên tia đối của tia HA lấy điểm D sao cho HD = HA. Chứng minh AB song song CD
cho tam giác ABC, trên tia đối tia AB lấy điểm M sao cho AB=AM. Trên tia AC lấy điểm N sao cho AC=AN. Chứng minh:
a) tam giác ABC=tam giác AMN
b) chứng minh BC//MN
c) gọi P và Q lần lượt là trung điểm của BC và MN. Chứng minh A là trung điểm của PQ
Cho tam giác ABC có AB=AC, M là trung điểm của BC . Trên tia đối của tia MA lấy điểm D sao cho AM=MD a)Chứng mình tâm giác AMB = tam giác DMC b)Chứng minh AB//DC Chứng minh CB là tia phân giác của góc ACD
Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD
a/ Chứng minh ABM=DCM
b/ Chứng minh AB // DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của tam giác ABC để ADC =30°.
e/ Trên tia đối của tia AC lấy H sao cho AC=AH.Chứng minh AD=BH
f /Chứng minh tam giác HBC vuông. (Chỉ cần làm câu e và f !)
Cho tam giác ABC vuông tại A. Trên BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC ở D. Trên BC lấy điểm E sao cho BA=BE
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh DE vuông góc với BC
c) Trên tia đối của tia AB lấy điểm M sao cho AM=EC, chứng minh MD=CD
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.