a: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
Do đó: ΔABM=ΔANM
b: Xét ΔMBE và ΔMNC có
góc BME=góc NM
MB=MN
góc MBE=góc MNC
Do đo: ΔMBE=ΔMNC
=>MC=ME
c: AE=AC
MC=ME
Do đó: AM là trung trực của CE
=>AM vuông góc với CE
a: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
Do đó: ΔABM=ΔANM
b: Xét ΔMBE và ΔMNC có
góc BME=góc NM
MB=MN
góc MBE=góc MNC
Do đo: ΔMBE=ΔMNC
=>MC=ME
c: AE=AC
MC=ME
Do đó: AM là trung trực của CE
=>AM vuông góc với CE
Cho tam giác ABC vuông tại a, tia phân giác góc a cắt AC tại E. Trên cạnh BC lấy M sao cho BA=BM
a) chứng minh : EM vuông góc BC
b) trên tia đối của AB lấy N sao cho AN=NC. Chứng minh tam giác BCE= tam giác BNE
c) chứng Minh M, E, N thẳng hàng
d) chứng minh BE đi qua trung điểm của AM và NC
Cho tam giác abc vuông tại a ( AB<AC) M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho : MD=MC . C/m : a) tam giác AMD = tam giác BMC b)BD vuông góc với AB c) Gọi N là trung điểm của BC , trên tia đối của tia NA lấy điểm E sao cho NE = NA chứng minh D,B,E thẳng hàng
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
cho tam giác abc vuông tại c trôn cạnh ab lấy d sao cho ad bằng ac kẻ qua d đg thẳng vuông góc với ab cắt bc tại e, ae cắt cd tại i ..a,cm aelaf tia phân giác của góc cab....b,cm ae là đg trung trực của cd ...c, so sánh cd và bc..d,m là trung điêm của bc, dm cắt bi tại g ,cg cắt db tại k cm k là rung điêm của db
Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Cho tam giác ABC có AB = AC. M là trung điểm của BC.
a. Chứng minh: tam giác ABM = tam giác ACM, AMB = 90 độ
b. Qua C vẽ đường thẳng d//AB, đường thẳng d cắt AM tại D. Chứng minh: tam giác ABM = tam giác DCM, CB là tia phân giác của góc ACD.
c. Trên tia đối của tia CD lấy điểm E sao cho Cx là tia phân giác của góc ACE. Chứng minh: Cx//Ad.
(mng giải theo lý thuyết từ "bài 14: trường hợp bằng nhau thứ 2 và thứ 3 của tam giác" đổ xuống giúp em với ạ, em cảm ơn nhiều)
Câu 5. Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác góc A (M ∈ BC). Trên cạnh AC lấy điểm N sao cho AB = AN.
a) Chứng minh ∆ABM = ∆ANM.
b) Chứng minh góc BAC= góc CMN
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AC lấy điểm D sao cho AB = AD. Trên tia đối của tia AB lấy điểm E sao cho AC = AE a) chứng minh tam giác ABC = tam giác ADE b) gọi M , N lần lượt là trung điểm của BC và DE , chứng minh AM = AN c) tính số đo của góc MAN