a: \(M=\dfrac{x+\sqrt{x}+\sqrt{x}}{x-1}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{x}{\sqrt{x}-1}\)
b: Để M=-1/2 thì \(\dfrac{x}{\sqrt{x}-1}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x=-\sqrt{x}+1\)
\(\Leftrightarrow2x+\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)=0\)
=>x=1/4