HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Số chữ số cần dùng để đánh số cho trang có 1 chữ số là:
\(\left(9-1+1\right)\times1=9\)(chữ số)
Số chữ số cần dùng để đánh số cho trang có 2 chữ số là:
\(\left(99-10+1\right)\times2=180\)(chữ số)
Số chữ số cần dùng để đánh số cho trang có 3 chữ số là:
\(\left(135-100+1\right)\times3=108\)(chữ số)
Tổng số chữ số cần dùng là:
9+180+108=297(chữ số)
e: \(\left(-1365\right)-\left(75-365\right)\)
\(=-1365-75+365\)
=-1000-75
=-1075
f: \(\left(-154\right)\cdot\left(-235\right)+154\cdot\left(-34\right)-154\)
\(=154\cdot235-154\cdot34-154\)
\(=154\left(235-34-1\right)=154\cdot200=30800\)
g: \(3^2:3+1=3+1=4\)
h: \(11+12+13+14+15+16+17+18+19\)
\(=\left(11+19\right)+\left(12+18\right)+\left(13+17\right)+\left(14+16\right)+15\)
=30+30+30+30+15
=120+15
=135
a: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét tứ giác BCEF có
A là trung điểm chung của BE và CF
=>BCEF là hình bình hành
Hình bình hành BCEF có BE\(\perp\)CF
nên BCEF là hình thoi
c: Hình thoi BCEF trở thành hình vuông khi BE=CF
mà \(AB=\dfrac{BE}{2};AC=\dfrac{CF}{2}\)
nên AB=AC
\(3^{2024}\) có chữ số tận cùng trùng với chữ số tận cùng của \(3^4\) vì 2024 chia hết cho 4 và 4 cũng chia hết cho 4
=>\(3^{2024}\) có chữ số tận cùng là 1
=>Chọn C
xy=12
=>(x;y)\(\in\){(1;12);(12;1);(-1;-12);(-12;-1);(2;6);(6;2);(-2;-6);(-6;-2);(3;4);(4;3);(-3;-4);(-4;-3)}
=>Có 12 cặp
Gọi hai số cần tìm là a,b
Tổng của hai số là 78 nên a+b=78
Nếu thêm vào số lớn 1,6 và bớt đi ở số bé 1,6 thì hai số mới có tỉ số là 3 nên \(\dfrac{a+1,6}{b-1,6}=3\)
=>\(a+1,6=3b-4,8\)
=>a=3b-4,8-1,6=3b-6,4
a+b=78
=>3b-6,4+b=78
=>4b=78+6,4=84,4
=>b=21,1
a=78-b=78-21,1=56,9
Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)-2^{32}\)
\(=2^{32}-1-2^{32}\)
=-1
a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: ΔABC vuông tại A
mà AD là đường trung tuyến
nên DA=DB
=>ΔDAB cân tại D
ΔDAB cân tại D
mà DE là đường cao
nên E là trung điểm của AB
Xét tứ giác ADBH có
E là trung điểm chung của AB và DH
=>ADBH là hình bình hành
Hình bình hành ADBH có DA=DB
nên ADBH là hình thoi
Sau khi đã bán 1/3 tấm vải xanh và 3/5 tấm vải đỏ thì số mét còn lại của hai loại vải bằng nhau nên ta có:
\(\left(1-\dfrac{1}{3}\right)\)x tấm vải xanh=\(\left(1-\dfrac{3}{5}\right)\)x tấm vải đỏ
=>\(\dfrac{2}{3}\) tấm vải xanh=\(\dfrac{2}{5}\) tấm vải đỏ
=>Tỉ số giữa độ dài tấm vải xanh và độ dài tấm vải đỏ là:
\(\dfrac{2}{5}:\dfrac{2}{3}=\dfrac{3}{5}\)
Hiệu số phần bằng nhau là 5-3=2(phần)
Độ dài tấm vải xanh là:
40:2x3=60(m)
Độ dài tấm vải đỏ là:
60+40=100(m)
Ta có: x(y+2)=7-y-2
=>x(y+2)=5-y
=>x(y+2)+y-5=0
=>\(x\left(y+2\right)+y+2-7=0\)
=>\(\left(x+1\right)\left(y+2\right)=7\)
=>\(\left(x+1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;5\right);\left(6;-1\right);\left(-2;-9\right);\left(-8;-3\right)\right\}\)