HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Giải hệ phương trình
\(\left\{{}\begin{matrix}\frac{xyz}{x+y}=\frac{24}{5}\\\frac{xyz}{y+z}=\frac{24}{7}\\\frac{xyz}{x+z}=\frac{1}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(yz+1\right)=\frac{7}{3}z\\y\left(xz+1\right)=8x\\z\left(xy+1\right)=\frac{9}{2}y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6x\left(y^2+z^2\right)=13yz\\3y\left(z^2+x^2\right)=5zx\\6z\left(x^2+y^2\right)=5xy\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6\left(x+y\right)=5xy\\12\left(y+z\right)=7yz\\4\left(y+z\right)=3zx\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\2x^2+y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=6\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2y^2x^2=16x^2+y\\16x^2+xy^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)