a) Xét \(\Delta AOD\) và \(\Delta BAD\) có:
\(\left\{{}\begin{matrix}\widehat{D}:chung\\A\widehat{O}D=D\widehat{A}B=90\end{matrix}\right.\)\(\Rightarrow\Delta AOD\wr\Delta BAD\left(g.g\right)\)
b) Ta có: \(D\widehat{A}O=A\widehat{B}D=A\widehat{B}O\left(\Delta AOD\wr\Delta BAD\right)\)
Và \(A\widehat{O}D=A\widehat{O}B=90\) (2 đường chéo vuông góc tại O)
Do đó \(\Delta AOD\wr\Delta BOA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{OD}{AO}\) (1)
Lại có: \(\left\{{}\begin{matrix}D\widehat{A}O:chung\\A\widehat{O}D=A\widehat{D}C=90\end{matrix}\right.\)\(\Rightarrow\Delta ADC\wr\Delta AOD\left(g.g\right)\)
\(\Rightarrow\dfrac{CD}{OD}=\dfrac{AD}{AO}\Leftrightarrow\dfrac{CD}{AD}=\dfrac{OD}{AO}\) (2)
Từ (1);(2)\(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{AD}\Rightarrow AD^2=AB\cdot CD\)
c) Ta có: AB song song với DC (ABCD là hình thang)
\(\Rightarrow A\widehat{B}O=O\widehat{D}C\left(slt\right)\)
Và \(A\widehat{O}B=D\widehat{O}C\left(đ^2\right)\)
Do đó \(\Delta OCD\wr\Delta OAB\left(g.g\right)\)
\(\Rightarrow k=\dfrac{OC}{OA}=\dfrac{CD}{AB}=\dfrac{9}{4}\)
\(\Rightarrow\dfrac{S_{\Delta OCD}}{S_{\Delta OAB}}=k^2=\dfrac{9}{4}^2=\dfrac{81}{16}\)
Vậy........................