HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\)
\(A=1+\dfrac{a+b}{ab}+\dfrac{a+b}{ab}\)
\(A=1+\dfrac{2}{ab}\)
Ta có:\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow ab\le\dfrac{1}{4}\)
\(\Rightarrow A\ge1+\dfrac{2}{\dfrac{1}{4}}=9\)
"="<=>a=b=0,5
Gọi a(km) là vận tốc thực của cano(a>0)
Thời gian cano đi cho tới khi gặp bè là 24:2=12(h)
Theo đề ta có pt:\(12a+24=96.2\)
\(\Leftrightarrow12a=168\)
\(\Leftrightarrow a=14\)(tm)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
dũng có loại 2000 đồng
tuổi anh hiện nay là 21
tuổi em hiện nay là 28
2)Đầu tiên ta cm bđt:\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(luôn đúng)
\(\Rightarrow xy+yz+zx\le3\)
"="<=>x=y=z=1
d)\(x^2-y^2+2x-4y-10=0\) \(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Mà x,y nguyên dương\(\Rightarrow x-y-1< x+y+3\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
+)Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...+\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+...+\dfrac{1}{200}\right)\)\(A>\dfrac{1}{125}.25+\dfrac{1}{150}.25+\dfrac{1}{175}.25+\dfrac{1}{200}.25=\dfrac{533}{840}>\dfrac{5}{8}\)
+)\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...+\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...+\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...+\dfrac{1}{200}\right)\)\(A< \dfrac{1}{100}.20+\dfrac{1}{120}.20+\dfrac{1}{140}.20+\dfrac{1}{160}.20+\dfrac{1}{180}.20=\dfrac{1879}{2520}< \dfrac{3}{4}\)
Ta có : 3n + 1 chia hết cho d => 4(3n + 1) chia hết cho d
4n + 1 chia hết cho d => 3(4n + 1) chia hết cho d
=> 4(3n + 1) - 3(4n + 1) chia hết cho d
=> (12n + 4) - (12n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)