√11+6√2 - √11-6√2
viết vào chỗ chấm
a.2/7+(3/7+5/7)= b.(6/11+5/11)+4/11= c.(5/6+7/6)+2/6=
`a, 2/7 +(3/7 + 5/7)= 2/7 + 3/7 + 5/7=(2/7 +5/7)+3/7= 1+3/7=7/7+3/7=10/7`
`b, (6/11+5/11)+4/11= 11/11+4/11=15/11`
`c, (5/6 + 7/6)+2/6= 12/6 + 2/6= 14/6= 7/3`
`@ yl`
\(a\) \(\dfrac{2}{7}+\left(\dfrac{3}{7}+\dfrac{5}{7}\right)=\dfrac{2}{7}+\dfrac{8}{7}=\dfrac{10}{7}\)
\(b\) \(\left(\dfrac{6}{11}+\dfrac{5}{11}\right)+\dfrac{4}{11}=\dfrac{11}{11}+\dfrac{4}{11}=\dfrac{15}{11}\)
\(c\) \(\left(\dfrac{5}{6}+\dfrac{7}{6}\right)+\dfrac{2}{6}=\dfrac{12}{6}+\dfrac{2}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
a ) 4 . 3^x-1 + 2 . 3^x+2 = 4 . 3^6 + 2 . 3^9
b ) 5^x+4 - 3 . 5^x+3 = 2 . 5^11
c ) 11 . 6^x-1 = 11 . 6^11 + 2 . 6^13
\(4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)
\(3^{x-1}.\left(4+2.3^3\right)=3^6.\left(4+2.3^3\right)\)
\(\Leftrightarrow3^{x-1}=3^6\)
\(\Leftrightarrow x-1=6\)
\(\Leftrightarrow x=7\)
Vậy \(x=7\)
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow5^{x+3}.\left(5-3\right)=2.5^{11}\)
\(\Leftrightarrow5^{x+3}.2=2.5^{11}\)
\(\Leftrightarrow5^{x+3}=5^{11}\)
⇔\(x+3=11\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
\(11.6^{x-1}=11.6^{11}+2.6^{13}\)
\(\Rightarrow11.6^{x-1}=6^{11}.\left(11+2.36\right)\)
\(\Rightarrow11.6^{x-1}=6^{11}.83\)
C/m: \(\sqrt{11+6\sqrt{2}}\) + \(\sqrt{11-6\sqrt{2}}\) = 6
Ta có VT:
\(VT=\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|3+\sqrt{2}\right|+\left|3-\sqrt{2}\right|\)
\(=3+\sqrt{2}+3-\sqrt{2}\)
\(=6=VP\left(dpcm\right)\)
\(VT=\sqrt{9+2\cdot3\cdot\sqrt{2}+2}+\sqrt{9-2\cdot3\cdot\sqrt{2}+2}\)
\(=3+\sqrt{2}+3-\sqrt{2}\)
=6=VP
Tính:
a, -3/4 + -5/4 + -7/4
b, -6/11 + 5/-11 + -2/11 + 6/11
a: \(=\dfrac{-3-5-7}{4}=\dfrac{-15}{4}\)
b: \(=\dfrac{-6-5-2+6}{11}=\dfrac{-7}{11}\)
chứng minh :a) 11+6\(\sqrt{2}\)= (3+\(\sqrt{2}\))\(^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)=6
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)= -2
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)=-4
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
Giải ô chữ dưới đây.
Biết rằng.
L. \(\dfrac{7}{6}+\dfrac{8}{6}\) T. \(\dfrac{1}{11}+\dfrac{7}{11}+\dfrac{9}{11}\)
Ạ. \(\dfrac{4}{11}+\dfrac{2}{11}\) Đ. \(\dfrac{3}{6}+\dfrac{1}{6}+\dfrac{7}{6}\) À. \(\dfrac{3}{11}+\dfrac{9}{11}\)
L: \(\dfrac{7}{6}\) +\(\dfrac{8}{6}\) = \(\dfrac{15}{6}\)
T: \(\dfrac{1}{11}\) + \(\dfrac{7}{11}\) + \(\dfrac{9}{11}\) = \(\dfrac{17}{11}\)
Ạ: \(\dfrac{4}{11}\) + \(\dfrac{2}{11}\) = \(\dfrac{6}{11}\)
Đ: \(\dfrac{3}{6}\) + \(\dfrac{1}{6}\) + \(\dfrac{7}{6}\) = \(\dfrac{11}{6}\)
À: \(\dfrac{3}{11}\) + \(\dfrac{9}{11}\) = \(\dfrac{12}{11}\)
a) 11+6\(\sqrt{2}\) = \(\left(3+\sqrt{2}\right)^2\)
b) 8-2\(\sqrt{7}\)=\(\left(\sqrt{7}-1\right)^2\)
c)\(\sqrt{11+6\sqrt{2}}=\sqrt{11-6\sqrt{2}}=6\)
d) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=-2\)
3/11x2=
6/11:3/11=
6/11:2=
2x3/11=
4x2/7=
8/7:2/7=
8/7:4=
2/7x4=
sorry vì hơi dài giúp mik với
3/11 x 2 = 6/11
6/11 : 3/11 = 2
6/11 : 2 = 3/11
2/3 x 11 = 22/3
4/2 x 7 = 14
8/7 : 2/7 = 4
8/7 : 4 = 2/7
2/7 x 4 = 8/7
Chứng minh rằng :
a) \(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b) \(\sqrt{11+6\sqrt[]{2}}+\sqrt{11-6\sqrt{2}}=6\)