Giải phương trình:
e) \(\sqrt{x^2}=\left|-8\right|\)
Tính:
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right).\)
2)\(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
3)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4)\(\sqrt{2\sqrt{3}-4}+\sqrt{2\sqrt{3}+4}\)
5)\(\sqrt{4\sqrt{6}+11}-\sqrt{11-4\sqrt{6}}\)
6)\(\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\)
7)\(\sqrt{5-2\sqrt{7-2\sqrt{6}}}\)
AI ĐÓ TỐT BỤNG GIÚP MK ZỚI:((
Thực hiện phép tính:
\(a,\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(b,\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\cdot\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(c,\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(d,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(e,\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(f,\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(g,\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
\(h,\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}\)
a) \(\frac{2\sqrt{5}-4\sqrt{10}}{3\sqrt{10}}\)
b)\(\frac{6\sqrt{6}-2\sqrt{12}+3-\sqrt{2}}{2\sqrt{6}+1}\)
c)\(\frac{\sqrt{3\left(3-\sqrt{11}\right)^2}}{\sqrt{6}\left(3-\sqrt{11}\right)}\)
d)\(\frac{5\sqrt{7}-4\sqrt{35}+7\sqrt{5}}{\sqrt{35}}\)
e) \(\left(\sqrt{3}-1\right)\sqrt{2\sqrt{19+8\sqrt{3}-4}}\)
g) \(\sqrt{47+\sqrt{5}}.\sqrt{7-\sqrt{2+\sqrt{5}}.}\sqrt{7+\sqrt{2+\sqrt{5}}}\)
\(\sqrt{\left(\sqrt{7}-5\right)^2}+\sqrt{\left(2-\sqrt{7}\right)^2}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
Rút gọn biểu thức
a. A = \(\sqrt{11-6\sqrt{2}}+3+\sqrt{2}\)
b. B = \(\sqrt{29-4\sqrt{7}}+\sqrt{23+8\sqrt{7}}\)
c. C = \(\sqrt{12+2\sqrt{11}+\sqrt{12-2\sqrt{11}}}\)
d. D = \(\left(3-\sqrt{2}\right).\sqrt{11+6\sqrt{2}}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
* Tính
a. A=\(\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)
b. B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)