Giải phương trình:
a) 2(x+3) - (3+x)(1+2x) = 0
b) x2 - 4x + 4 = 9
Giải phương trình:
a) 2(x+3) - (3+x)(1+2x) = 0
b) x2 - 4x + 4 = 9
a)2.(x+3)-(3+x).(1`+2x)=0\(\Leftrightarrow\)2x+6-3-6x-x-2x\(^2\)=0
\(\Leftrightarrow\)-2x\(^2\)-5x+3=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy PT đã cho có tập nghiệm S=\(\left\{-3;\dfrac{1}{2}\right\}\)
b)x\(^2\)-4x+4=9\(\Leftrightarrow\)x\(^2\)-4x+4-9=0\(\Leftrightarrow\)x\(^2\)-4x-5=0
\(\Leftrightarrow\left\{{}\begin{matrix}5-x=0\\1+x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy PT đã cho có tập nghiệm S=\(\left\{-1;5\right\}\)
Bài 1 giải phương trình:
a) (4x2+4x+1)-x2=0
b) x2-2x+1=4
c) x2-5x+6=0
Bài 2: giải phương trình
a) \(\dfrac{2x-5}{x+5}\)= 3
b) \(\dfrac{5}{3x+2}\)= 2x-1
c) \(\dfrac{x^2-6}{x}\)= x+\(\dfrac{3}{2}\)
d) \(\dfrac{1}{x-2}\)+3= \(\dfrac{x-3}{2-x}\)
e) \(\dfrac{3x-2}{x+7}\)=\(\dfrac{6x+1}{2x-3}\)
f) \(\dfrac{x-2}{x+2}\) - \(\dfrac{3}{x-2}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
2f.
ĐKXĐ: $x\neq \pm 2$
PT $\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}$
$\Rightarrow (x-2)^2-3(x+2)=2(x-11)$
$\Leftrightarrow x^2-4x+4-3x-6=2x-22$
$\Leftrightarrow x^2-7x-2=2x-22$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Leftrightarrow x-4=0$ hoặc $x-5=0$
$\Leftrightarrow x=4$ hoặc $x=5$ (tm)
Giải phương trình:
a, x^2+3|x|-4=0
b,|x^2-4|=x^2-4
c,(x+1)^2-|3-2x|-|x-2|^2+6=0
d,x^2+4x+3+|2x+5|-(x+1)(x+3) - 5+2x=0
Giải bất phương trình:
a, 2|x-1| <x+1
b, |x-3| > x+1 phần 2
mình đang cần gấp ;-;
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
Giải phương trình:
a) x4 - 2x3 + x2 - 4x +4 = 0
b) x4 + 2x3 - 3 = 0
c) 2x4 - 100x + 98 = 0
d) (x + 1)(x + 2)(x + 3)(x + 4) = 24
d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Bài 1 GIẢI PHƯƠNG TRÌNH:
a) \(\sqrt{x-5}=\sqrt{3-x}\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
c) x2+4x+5=2\(\sqrt{2x+3}\)
d) \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
a) \(\sqrt{x-5}=\sqrt{3-x}\)
⇔\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)
⇔\(x-5=3-x\)
⇔\(x=4\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
⇔\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)
⇔\(4-5x=2-5x\)
⇔\(2=0\) (Vô lí)
Giải phương trình:
a, 8x + 8-x + 2x + 2-x - 3 = 0
b, 9x + 9-x + 3x + 3-x + 2 = 0
Giải phương trình:
a)x2-4x+4=0
b)2x2-x=0
c)x2-5x+6=0
d)x2+y2=0
e)x2+6x+10=0
\(a.x^2-4x+4=0\)
\(\left(x-2\right)^2=0\)
=>x=2
b) \(2x^2-x=0\)
\(x\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(x^2-5x+6=0\)
\(x^2-2x-3x+6=0\)
\(\left(x-2\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
d) \(x^2+y^2=0\)
Vì \(x^2,y^2\ge0\forall x,y\)
=>x=y=0
e) \(x^2+6x+10=0\)
\(\left(x+3\right)^2+1=0\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> VT>0 \(\forall x\)
=> phương trình vô nghiệm
a) \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
b) \(2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(x^2-5x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) \(\left(a+b+c=0\right)\)
d) \(x^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
e) \(x^2+6x+10=0\)
\(\Leftrightarrow x^2+6x+9+1=0\)
\(\Leftrightarrow\left(x+3\right)^2+1=0\left(1\right)\)
mà \(\left(x+3\right)^2+1\ge1>0,\forall x\in R\)
Nên phương trình (1) vô nghiệm
Giải phương trình:
a) (3x+1)2-(2x-5)2=00
b) (x+3)(4-3x)=x2+6x+9
\(a,\left(3x+1\right)^2-\left(2x-5\right)^2=0\\ \Leftrightarrow\left(3x+1+2x-5\right)\left(3x+1-2x+5\right)=0\\ \Leftrightarrow\left(5x-4\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-6\end{matrix}\right.\\ b,\left(x+3\right)\left(4-3x\right)=x^2+6x+9\\ \Leftrightarrow\left(x+3\right)\left(4-3x\right)-\left(x+3\right)^2=0\\ \Leftrightarrow\left(x+3\right)\left(4-3x-x-3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(1-4x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{4}\end{matrix}\right.\)
Giải các phương trình:
a) (x - 7)(2x + 8) = 0
b) (3x +1)(5x - 2) = 0
c) (x - 1)(2x + 7)(x2 + 2) = 0
d) (2x - 1)(x + 8)(x - 5) = 0
a) (x - 7)(2x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy: S = {7; -4}
b) Tương tự câu a
c) (x - 1)(2x + 7)(x2 + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)
Mà: x2 + 2 > 0 với mọi x
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)
d) (2x - 1)(x + 8)(x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)
a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{7;-4\right\}\)
b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
a)(x-7)(2x+8)=0
⇔x-7=0 hoặc 2x+8=0
1.x-7=0⇔x=7
2.2x+8=0⇔2x=-8⇔x=-4
phương trình có 1 nghiệm x=7 và x=-4
b)(3x+1)(5x-2)=0
⇔3x+1=0 hoặc 5x-2=0
1.3x+1=0⇔3x=-1⇔x=-1/3
2.5x-2=0⇔5x=2⇔x=5/2
phương trình có 2 nghiệm x=-1/3 và x=5/2