(4x-1)^2=(1-4x)^4
`c)(2x-1)^{2}+(1-x).3x<=(x+2)^{2}`
`<=>>4x^{2}-4x+1+3x-3x^{2}<=x^{2}+4x+4`
`<=>x^{2}-x+1<=x^{2}+4x+4`
`<=>4x+x>=1-4`
`<=>5x>=-3`
`<=>x>=-3/5`
thứ nhất bn đăng sai môn
thứ hai bn giải r đăng lmj :???
Thứ nhất đang sai môn
Thứ hai không biết giải fndf]-0jhdfuhiofghjfgoihjfgopihjfgihjohjgo;hjghghgdjhldhjdfighjs;dligjlkdfgjdhfghfgh41fg6j541fg3j5h4gf6j54dgh65gf4654j
5gj5fg
35j4gh
6jfd4
5j4fj
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
Rút gọn các biểu thức sau:
a) ((1/x^2+4x+4)-(1/x^2-4x+4)):((1/x+2)+(1/x^2-2))
b)((2x/2x-y)-(4x^2/4x^2+4xy+y^2)):((2x/4x^2-y^2)+(1/y-2x))
a,sửa đề : \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)
\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)
b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)
a, Vẽ đồ thị hàm số y= \(\sqrt{4x^2-4x+1}\) + \(\sqrt{x^{2^{ }}-4x+4}\)
b, Biện luận theo m số nghiệm của phương trình:
\(\sqrt{4x^{2^{ }}-4x+1}\)+ \(\sqrt{x^{2^{ }}-4x+4}\) = m
\(y=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\left|2x-1\right|+\left|x-2\right|\)
\(y=\left[{}\begin{matrix}3x-3\left(\text{với }x\ge2\right)\\3-3x\left(\text{với }x\le\dfrac{1}{2}\right)\\x+1\left(\text{với }\dfrac{1}{2}\le x\le2\right)\end{matrix}\right.\)
Từ đó ta có đồ thị hàm số như sau:
Từ đồ thị ta thấy phương trình \(\sqrt{4x^2-4x+1}+\sqrt{x^2-4x+4}=m\):
- Có đúng 1 nghiệm khi \(m=\dfrac{3}{2}\)
- Có 2 nghiệm phân biệt khi \(m>\dfrac{3}{2}\)
- Vô nghiệm khi \(m< \dfrac{3}{2}\)
1.\(\sqrt{x^2-4x+3}=x-2\)
2.\(\sqrt{4x^2-4x+1}=x-1\)
3. \(2x-\sqrt{4x-1}=0\)
4. \(x-2\sqrt{x-1}=16\)
1. \(\sqrt{x^2-4x+3}=x-2\)
<=> x2 - 4x + 3 = (x - 2)2
<=> x2 - 4x + 3 = x2 - 4x + 4
<=> x2 - x2 - 4x + 4x = 1
<=> 0 = 1 (Vô lí)
vậy PT có nghiệm là S = \(\varnothing\)
2. \(\sqrt{4x^2-4x+1}=x-1\)
<=> \(\sqrt{\left(2x-1\right)^2}=x-1\)
<=> 2x - 1 = x - 1
<=> 2x - x = -1 + 1
<=> x = 0
1: ta có: \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)(vô lý)
2: Ta có: \(\sqrt{4x^2-4x+1}=x-1\)
\(\Leftrightarrow\left(2x-1-x+1\right)\left(2x-1+x-1\right)=0\)
\(\Leftrightarrow x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
Cho biểu thức B= \(\sqrt{4x-2\sqrt{4x-1}}\)\(+\sqrt{4x+2\sqrt{4x-1}}\)\(với\dfrac{1}{4}\le x\le\dfrac{1}{2}\)
Rút gọn biểu thức: \(\sqrt{4x-2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}\) khi \(x\ge\dfrac{1}{4}\)
\(=\sqrt{4x-1-2\sqrt{4x-1}+1}+\sqrt{4x-1+2\sqrt{4x-1}+1}\)
\(=\sqrt{\left(\sqrt{4x-1}-1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}\)
\(=\left|\sqrt{4x-1}-1\right|+\sqrt{4x-1}+1\)
\(=\left[{}\begin{matrix}2\sqrt{4x-1}\text{ nếu }x\ge\dfrac{1}{2}\\2\text{ nếu }\dfrac{1}{4}\le x< \dfrac{1}{2}\end{matrix}\right.\)
B14
a) (3x-1)^2-(3x+4)(3x-4)=32
b)(4x+3)^2-(4x-1)(4x+1)=-14
Giúp tui với tui đang cần gấp !!
a: Ta có: \(\left(3x-1\right)^2-\left(3x+4\right)\left(3x-4\right)=32\)
\(\Leftrightarrow9x^2-6x+1-9x^2+16=32\)
\(\Leftrightarrow-6x=15\)
hay \(x=-\dfrac{5}{2}\)
b: Ta có: \(\left(4x+3\right)^2-\left(4x-1\right)\left(4x+1\right)=-14\)
\(\Leftrightarrow16x^2+24x+9-16x^2+1=-14\)
\(\Leftrightarrow24x=-24\)
hay x=-1
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
a) \(\sqrt[]{x^2-2x+4}=2x-2\)
\(\Leftrightarrow\sqrt[]{x^2-2x+4}=2\left(x-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)\ge0\\x^2-2x+4=4\left(x-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\) \(\left(1\right)\)
Giải pt \(3x^2-6x=0\)
\(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=2\)
c) \(\sqrt{x^2-3x+2}=\sqrt[]{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-3x+2=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x=1\cup x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Gidipt 1) sqrt(x ^ 2 - x) = sqrt(3 - x)
2) sqrt(x ^ 2 - 4x + 3) = x - 2
3) sqrt(4 * (1 - x) ^ 2) - 6 = 0
4) sqrt(x ^ 2 - 4x + 4) = sqrt(4x ^ 2 - 12x + 9)
5) sqrt(x ^ 2 - 4) + sqrt(x ^ 2 + 4x + 4) = 0
6) 1sqrt(x + 2sqrt(x - 1)) + sqrt(x - 2sqrt(x - 1)) = 2
1: =>x^2-x=3-x
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
2: =>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
3: =>2|x-1|=6
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
4: =>|2x-3|=|x-2|
=>2x-3=x-2 hoặc 2x-3=-x+2
=>x=1 hoặc x=5/3
5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2