Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ng Thu Hien

a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16

Nguyễn Đức Trí
21 tháng 9 2023 lúc 7:41

a) \(\sqrt[]{x^2-2x+4}=2x-2\)

\(\Leftrightarrow\sqrt[]{x^2-2x+4}=2\left(x-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)\ge0\\x^2-2x+4=4\left(x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\) \(\left(1\right)\)

Giải pt \(3x^2-6x=0\)

\(\Leftrightarrow3x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=2\)

c) \(\sqrt{x^2-3x+2}=\sqrt[]{x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-3x+2=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x=1\cup x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)


Các câu hỏi tương tự
Vy thị thanh thuy
Xem chi tiết
Nguyễn Ngọc Nhã Hân
Xem chi tiết
nguyễn thành
Xem chi tiết
Nguyễn Minh Phong
Xem chi tiết
Nguyễn Hoàng Lâm
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
Tô Thu Huyền
Xem chi tiết
Vinh Nguyễn Quang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết