e) ĐKXĐ: \(x^2-9\ge0\Leftrightarrow\left(x-3\right).\left(x+3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right).\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(TH1:x-3=0\Leftrightarrow x=3\)
\(TH2:\sqrt{x-3}=-\sqrt{x+3}\Leftrightarrow x=3\text{ và }x=-3\left(loai\right)\)
Vậy giá trị x cần tìm là 3
ĐKXĐ: \(3-x\ge0\Leftrightarrow x\le3\)
\(\sqrt{x^2-6x+9}=3-x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=3-x\\3-x=3-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\\text{vô số x tm}\left(x\le3\right)\end{matrix}\right.\)
Vậy giá trị x cần tìm là \(x\le3\)
b) \(\sqrt{36^2-12x+1}=5\)
\(\Leftrightarrow\sqrt{\left(6x-1\right)^2}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy giá trị x thỏa mãn là \(\left[{}\begin{matrix}x=1\\x=-\frac{2}{3}\end{matrix}\right.\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow x\ge1\)
\(\sqrt{x+2}.\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x^2+x-2}=2\)
\(\Leftrightarrow x^2+x-2=4\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)=4+\frac{9}{4}=\frac{25}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{5}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{5}{2}\\x+\frac{1}{2}=-\frac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMDKXD\right)\\x=-3\left(KTMDKXD\right)\end{matrix}\right.\)
Vậy giá trị x thỏa mãn là: x=2
d) ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(TMĐKXĐ\right)\\x=0\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy giá trị x thỏa mãn là \(\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)