a) \(\sqrt{9x^2}=2x+1\) (1)
\(\Leftrightarrow3\cdot\left|x\right|=2x+1\)
\(\Leftrightarrow3\cdot\left|x\right|-2x=1\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2x=1\left(đk:x\ge0\right)\\3\cdot\left(-x\right)-2x=1\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(đk:x\ge0\right)\\x=-\dfrac{1}{5}\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{1}{5};1\right\}\)
b) \(\sqrt{x^2+6x+9}=3x-1\) (2)
\(\Leftrightarrow x^2+6x+9=\left(3x-1\right)^2\)
\(\Leftrightarrow x^2+6x+9=9x^2-6x+1\)
\(\Leftrightarrow x^2+6x+9-9x^2+6x-1=0\)
\(\Leftrightarrow-8x^2+12x+8=0\)
\(\Leftrightarrow2x^2-3x-4=0\)
\(\Leftrightarrow x=\dfrac{-\left(-3\right)\pm\sqrt{\left(-3\right)^2-4\cdot2\cdot\left(-2\right)}}{2\cdot2}\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{9+16}}{4}\)
\(\Leftrightarrow x=\dfrac{3\pm5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+5}{4}\\x=\dfrac{3-5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
sau khi dùng phép thử ta nhận thấy \(x\ne-\dfrac{1}{2}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{2\right\}\)
c) \(\sqrt{1-4x+4x^2}=5\) (3)
\(\Leftrightarrow1-4x+4x^2=25\)
\(\Leftrightarrow\left(1-2x\right)^2=25\)
\(\Leftrightarrow1-2x=\pm5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2;3\right\}\)
d) \(\sqrt{x^4}=7\) (4)
\(\Leftrightarrow x^2=7\)
\(\Leftrightarrow x=\pm\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-\sqrt{7};\sqrt{7}\right\}\)