Tính sô đo các của tam giác ABC biết:\(\dfrac{sinA}{1}=\dfrac{sinB}{\sqrt{3}}=\dfrac{sinC}{2}\)
Nhận dạng tam giác ABC biết:
1) S = \(\dfrac{1}{6}\) (c.ha + b.hc + a.hc)
2) 2(a2 + b2 + c2) = a(b2 + c2) + b(c2 + a2) + c(a2 + b2)
3) ha + hb + hc =9r
4) \(\dfrac{sinA}{1}=\dfrac{sinB}{\sqrt{3}}=\dfrac{sinC}{2}\)
1.
Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)
\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)
\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)
Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Leftrightarrow\) Tam giác đã cho đều
2.
Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)
Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?
3.
Theo câu a, ta có:
\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Hay tam giác đã cho đều
4.
Theo định lý hàm sin: \(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{2R}=\dfrac{b}{2\sqrt{3}R}=\dfrac{c}{4R}\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}=\dfrac{c}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{c}{2}\\b=\dfrac{c\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=\dfrac{c^2}{4}+\dfrac{3c^2}{4}=c^2\)
\(\Rightarrow\Delta ABC\) vuông tại C theo Pitago đảo
Cho tam giác ABC, chứng minh rằng:
a) \(Sin\dfrac{A}{2}+Sin\dfrac{B}{2}+Sin\dfrac{C}{2}\le\dfrac{3}{2}\)
b) \(SinA+SinB+SinC\le\dfrac{3\sqrt{3}}{2}\)
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
Cho tam giác ABC nhọn. C/m: \(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
Ta có : \(S_{ABC}=\dfrac{1}{2}bc.sinA=\dfrac{1}{2}acSinB=\dfrac{1}{2}abSinC\)
\(\Rightarrow bc.sinA=acSinB=abSinC\)
- Lấy abc chia cho cả 3 vế ta được ĐPCM
Kẻ AH⊥BC
Xét ΔABH vuông tại H có \(AH=c\cdot\sin\widehat{B}\)
Xét ΔACH vuông tại H có \(AH=b\cdot\sin\widehat{C}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{AH}{\sin\widehat{B}}\\b=\dfrac{AH}{\sin\widehat{C}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AH}{c}\\\sin\widehat{C}=\dfrac{AH}{b}\end{matrix}\right.\Leftrightarrow\dfrac{c}{\sin\widehat{C}}=\dfrac{b}{\sin\widehat{B}}\)(1)
Kẻ BK⊥AC
Cm tương tự, ta được: \(\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)
Từ (1), (2) suy ra đpcm
Giúp mình với chiều nay kiểm tra rồi !
Cho tam giác nhọn ABC . Gọi a,b,c là độ dài các cạnh đối diện với các đỉnh A,B,C .
a ) CM \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b) Có thể sẫy ra đẳng thức : sinA=sinB+sinC
\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)
\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)
\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)
\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)
Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)
\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
\(b,\) Không thể suy ra đẳng thức
Cho tam giác nhọn ABC , biết BC=a , AC = b , AB=c . Gọi S,P lần lượt là diện tích , nữa chu vi của tam giác ABC . CMR : \(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
cho tam giác ABC biết \(\dfrac{sinA}{sinB}=\sqrt{3}\) và BC=2.Tính AC
Theo định lí hàm số sin:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow\dfrac{sinA}{sinB}=\dfrac{a}{b}=\dfrac{2}{b}=\sqrt{3}\)
\(\Rightarrow AC=b=\dfrac{2}{\sqrt{3}}\)
Chứng minh rằng với mọi tam giác ABC ta có:
a) \(SinA+SinB+SinC\le Cos\dfrac{A}{2}+Cos\dfrac{B}{2}+Cos\dfrac{C}{2}\)
b) \(CosA.CosB.CosC\le Sin\dfrac{A}{2}.Sin\dfrac{B}{2}.Sin\dfrac{C}{2}\)
cho tam giác ABC có 3 góc nhọn AB=c; AC=b, chứng minh:
a) \(\dfrac{SinA}{SinB}=\dfrac{a}{b}\)
b)\(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html
Cho tam giácABC có hb +hc=2ha.Chứng minh rằng:\(\dfrac{1}{sinB}+\dfrac{1}{sinC}=\dfrac{1}{sinA}\)
\(h_b+h_c=2h_a\)
\(\Leftrightarrow\dfrac{2.S_{ABC}}{b}+\dfrac{2.S_{ABC}}{c}=\dfrac{4.S_{ABC}}{a}\)
\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{2}{a}\)
Áp dụng định lí sin:
\(\dfrac{1}{sinA}+\dfrac{1}{sinB}=\dfrac{2R}{b}+\dfrac{2R}{c}=2R\left(\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{2.2R}{a}=\dfrac{2}{sinA}\)
Không biết đề có sai không hay bài tui làm sai nữa.