1: Tínhgiá trị của biểu thức P = ( 1-3cos2a)( 2+3cos2a) , biết \(sina=\dfrac{2}{3}\)
2: Cho cota = 2 . Tính giá trị của biểu thức A = \(\dfrac{2sina+3cosa}{5cosa-6sina}\)
giải phương trình lượng giác
\(\dfrac{cosx-\sqrt{3}sinx}{sinx-\dfrac{1}{2}}=0\)
a)\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
b)\(\dfrac{2sin2x-cos2x-7sinx+4+\sqrt{3}}{2cosx+\sqrt{3}}=1\)
c)\(\dfrac{\left(1+sinx+cos2x\right)sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
d)\(\left(\sqrt{3}sin2x+1\right)\left(2sinx-1\right)+sin3x-cos2x-sinx=0\)
giải pt \(\sqrt{3}sinx+cosx=3+\dfrac{1}{\sqrt{3}sinx}+cosx+1\)
\(2\sqrt{3}cotx-\dfrac{1}{sinx}=1+\dfrac{\sqrt{3}cotx}{sinx}-cot\)2x
8sinx= \(\dfrac{\sqrt{3}}{cosx}\)+\(\dfrac{1}{sinx}\)
sinx +\(\sqrt{3}\)cosx = \(\dfrac{1}{cosx}\)
Giải các phương trình sau :
a) \(\sin\left(x+1\right)=\dfrac{2}{3}\)
b) \(\sin^22x=\dfrac{1}{2}\)
c) \(\cot^2\dfrac{x}{2}=\dfrac{1}{3}\)
d) \(\tan\left(\dfrac{\pi}{12}+12x\right)=-\sqrt{3}\)
Cho tam giác ABC có: tanA+tanC=2tanB. CMR: cosA+cosC\(\le\dfrac{3\sqrt{2}}{4}\)
1. Cho biết \(cosx=\dfrac{3}{4}\). Tính giá trị của biểu thức \(P=sin^22x\).
2. Giải phương trình \(cos2x-sin\left(x+\dfrac{\pi}{3}\right)=0\)
1/ Giải phương trình sau:
\(tan^2\left(x+\dfrac{\pi}{3}\right)+\left(\sqrt{3}-1\right)tan\left(x+\dfrac{\pi}{3}\right)-\sqrt{3}=0\)