1.
\(8sinx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\)
\(\Leftrightarrow4sinx=\dfrac{\sqrt{3}}{2cosx}+\dfrac{1}{2sinx}\)
\(\Leftrightarrow4sinx=\dfrac{\sqrt{3}sinx+cosx}{sin2x}\)
\(\Leftrightarrow4sinx.sin2x=\sqrt{3}sinx+cosx\)
\(\Leftrightarrow2cosx-2cos3x=\sqrt{3}sinx+cosx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=2cos3x\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos3x\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=\pm3x+k2\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}-k\pi\\x=-\dfrac{\pi}{12}+\dfrac{k\pi}{2}\end{matrix}\right.\)
2.
ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\)
\(sinx+\sqrt{3}cosx=\dfrac{1}{cosx}\)
\(\Leftrightarrow2sinx.cosx+2\sqrt{3}cos^2x-\sqrt{3}=2-\sqrt{3}\)
\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=1-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{2-\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k2\pi\\2x+\dfrac{\pi}{3}=\pi-arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+\dfrac{1}{2}arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k\pi\\x=\dfrac{\pi}{3}-\dfrac{1}{2}arcsin\left(\dfrac{2-\sqrt{3}}{2}\right)+k\pi\end{matrix}\right.\)