Bài 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Vi

Nhận dạng tam giác ABC biết:

1) S = \(\dfrac{1}{6}\) (c.h+ b.h+ a.hc)

2) 2(a2 + b2 + c2) = a(b2 + c2) + b(c2 + a2) + c(a2 + b2)

3) ha + hb + hc =9r

4) \(\dfrac{sinA}{1}=\dfrac{sinB}{\sqrt{3}}=\dfrac{sinC}{2}\)

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:20

1.

Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)

\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)

\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)

Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

\(\Leftrightarrow\) Tam giác đã cho đều

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:20

2.

Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)

Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?

3.

Theo câu a, ta có:

\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Hay tam giác đã cho đều

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:24

4.

Theo định lý hàm sin: \(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{2R}=\dfrac{b}{2\sqrt{3}R}=\dfrac{c}{4R}\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}=\dfrac{c}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{c}{2}\\b=\dfrac{c\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=\dfrac{c^2}{4}+\dfrac{3c^2}{4}=c^2\)

\(\Rightarrow\Delta ABC\) vuông tại C theo Pitago đảo


Các câu hỏi tương tự
Nguyễn Kim Khánh
Xem chi tiết
Bùi Minh Khang
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
Anxiety
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Lê Khổng Bảo Minh
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
tuấn nguyễn
Xem chi tiết