1.
Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)
\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)
\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)
Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Leftrightarrow\) Tam giác đã cho đều
2.
Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)
Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?
3.
Theo câu a, ta có:
\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Hay tam giác đã cho đều
4.
Theo định lý hàm sin: \(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{2R}=\dfrac{b}{2\sqrt{3}R}=\dfrac{c}{4R}\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}=\dfrac{c}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{c}{2}\\b=\dfrac{c\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=\dfrac{c^2}{4}+\dfrac{3c^2}{4}=c^2\)
\(\Rightarrow\Delta ABC\) vuông tại C theo Pitago đảo