Bài 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lâm Ánh Yên

Cho tam giác ABC có ba cạnh a,b,c. Chứng minh rằng:

\(\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

Nguyễn Việt Lâm
27 tháng 2 2021 lúc 17:25

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

Ngô Thành Chung
2 tháng 3 2021 lúc 15:33

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)


Các câu hỏi tương tự
quangduy
Xem chi tiết
Queen Material
Xem chi tiết
Thảo Vi
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
MONKEY.D.LUFFY
Xem chi tiết
quangduy
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
Phước thịnh Võ
Xem chi tiết