tìm x biết
d) 6x2 + 13x + 3 = 0
Tìm x:
a) (2x-3)2+6(2x-1)=7
b) x2-7x+10=0
c) -6x2+13x-5=0
d) x4+7x2-18=0
a: Ta có: \(\left(2x-3\right)^2+6\left(2x-1\right)=7\)
\(\Leftrightarrow\left(2x-3\right)^2+6\left(2x-1\right)-7=0\)
\(\Leftrightarrow4x^2-12x+9+12x-6-7=0\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
b: Ta có: \(x^2-7x+10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Tìm x:
a) (2x-3)2+6(2x-1)=7
b) x2-7x+10=0
c) -6x2+13x-5=0
d) x4+7x2-18=0
a) \(\left(2x-3\right)^2+6\left(2x-1\right)=7\\ \Rightarrow4x^2-12x+9+12x-6-7=0\\ \Rightarrow4x^2-4=0\\ \Rightarrow x^2-1=0\\ \Rightarrow x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
b) \(x^2-7x+10=0\\ \Rightarrow\left(x^2-2x\right)-\left(5x-10\right)=0\\ \Rightarrow\left(x-2\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
c) \(-6x^2+13x-5=0\\ \Rightarrow-\left(6x^2-13x+5\right)=0\\ \Rightarrow-\left[\left(6x^2-10x\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left[2x\left(3x-5\right)-\left(3x-5\right)\right]=0\\ \Rightarrow-\left(2x-1\right)\left(3x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\left(2x-1\right)=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\3x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\)
d) \(x^4+7x^2-18=0\\ \Rightarrow\left(x^4-4\right)+\left(7x^2-14\right)=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+2\right)+7\left(x^2-2\right)=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x^2=-9\left(loại\right)\end{matrix}\right.\)
Tìm x biết :
a) 6x2 + 5x - 6 = 0
b) 6x2 - 13x + 6 = 0
c) 10x2 - 13x - 3 =0
d) 20x2 + 19x - 3 = 0
e) 3x2 -x + 6 = 0
a)\(6x^2+5x-6=0\)
\(\Leftrightarrow6x^2-4x+9x-6=0\)
\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
b)\(6x^2-13x+6=0\)
\(\Leftrightarrow6x^2-4x-9x+6=0\)
\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
c)\(10x^2-13x-3=0\)
\(\Leftrightarrow10x^2-15x+2x-3=0\)
\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)
d)\(20x^2+19x-3=0\)
\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)
\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)
e)\(3x^2-x+6=0\)
\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)
Suy ra vô nghiệm
tìm x biết
a, (3x - 5)(2x + 3) - 6x2 = 7
b, x(x - 7 ) - 2x + 14 = 0
tìm x biết a)x(2x-1)-(x-1)2-x2=0
b)(x+2)3-x3-6x2=4
a,x(2x-1)-(x-1)^2-x^2=0
<=>x(2x-1-x)-(x-1)^2=0
<=>x(x-1)-(x-1)^2=0
<=>(x-x+1)(x-1)=0
<=>x-1=0
<=>x=1
b,(x+2)^3-x^3-6x^2=4
<=>x^3+6x^2+12x+8-x^3-6x^2=4
<=>12x+8=4
<=>x=-1/3
tick mik nha
`a)x(2x-1)-(x-1)^2-x^2=0`
`<=>2x^2-x-x^2+2x-1-x^2=0`
`<=>x-1=0`
`<=>x=1`
Vậy `x=1.`
`b)(x+2)^3-x^3-6x^2=4`
`<=>x^3+6x^2+12x+8-x^3-6x^2=4`
`<=>12x+8=4`
`<=>12x=-4`
`<=>x=-1/3`
Vậy `x=-1/3.`
a: Ta có: \(x\left(2x-1\right)-\left(x-1\right)^2-x^2=0\)
\(\Leftrightarrow2x^2-x-x^2+2x-1-x^2=0\)
\(\Leftrightarrow x=1\)
b: Ta có: \(\left(x+2\right)^3-x^3-6x^2=4\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=4\)
\(\Leftrightarrow12x=-4\)
hay \(x=-\dfrac{1}{3}\)
Bài 5: Tìm x (Giải phương trinh)
a)x^3-13x=0
b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0
d) x + 1 = (x + 1)2
e) x + 5x2 = 0
f) x3 + x = 0
Bài 5: Tìm x (Giải phương trình)
a)x^3-13x=0 b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0 d) x + 5x2 = 0
d) x + 1 = (x + 1)2 e) x3 + x = 0
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) Ta có: \(2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)
d) Ta có: \(5x^2+x=0\)
\(\Leftrightarrow x\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)
Dạng 2 : Tìm x Bài 1: Tìm x biết :
a) ( x – 16 ) – 74 = 0 b) (3 x – 5) .7 mũ 3 = 7 mũ 4
c) 560 – 13x = 365 d) 275 – 7( x + 1) = 100
e) 3 x 7 14 3.2 mũ 3 f) 7x – 49 = 105
g) 5x – 16 = 14 h) 3x – 138 = 23 . 2 2
Tìm x biết:
x3 – 6x2 + 12x – 8 = 0
\(\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0
b) 9.(2x+1)2-4.(x+1)2=0
c) x3-6x2+9x=0
d) x2.(x+1)-x.(x+1)+x.(x-1)=0
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)