Violympic toán 8

Nguyễn Thanh Hiền

Cho \(x,y,z\in R\) thỏa mãn \(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Nguyễn Việt Lâm
8 tháng 5 2019 lúc 0:52

Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)

\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)

\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))

\(\Rightarrow x+y+z\ge3\)

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

//Hoặc cách khác sử dụng AM-GM:

\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);

\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

Cộng vế với vế của 4 BĐT trên ta có:

\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
Suzanna Dezaki
Xem chi tiết
Matsumi
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Lê Trường Lân
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Big City Boy
Xem chi tiết
Lý Thuận Giang Hà
Xem chi tiết
pro
Xem chi tiết
Bùi Minh Lâm
Xem chi tiết